Lankford, Séamus, Afli, Haithem ORCID: 0000-0002-7449-4707 and Way, Andy ORCID: 0000-0001-5736-5930 (2021) Transformers for low-resource languages: Is féidir linn! In: Machine Translation Summit XVIII: Research Track, 16 - 20 Aug 2021, Virtual.
Abstract
The Transformer model is the state-of-the-art in Machine Translation. However and in general and neural translation models often under perform on language pairs with insufficient training data. As a consequence and relatively few experiments have been carried out using this architecture on low-resource language pairs. In this study and hyperparameter optimization of Transformer models in translating the low-resource English-Irish language pair is evaluated. We demonstrate that choosing appropriate parameters leads to considerable performance improvements. Most importantly and the correct choice of subword model is shown to be the biggest driver of translation performance. SentencePiece models using both unigram and BPE approaches were appraised. Variations on model architectures included modifying the number of layers and testing various regularization techniques and evaluating the optimal number of heads for attention. A generic 55k DGT corpus and an in-domain 88k public admin corpus were used for evaluation. A Transformer optimized model demonstrated a BLEU score improvement of 7.8 points when compared with a baseline RNN model. Improvements were observed across a range of metrics and including TER and indicating a substantially reduced post editing effort for Transformer optimized models with 16k BPE subword models. Bench-marked against Google Translate and our translation engines demonstrated significant improvements. The question of whether or not Transformers can be used effectively in a low-resource setting of English-Irish translation has been addressed. Is féidir linn - yes we can.
Metadata
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Event Type: | Conference |
Refereed: | Yes |
Subjects: | Computer Science > Artificial intelligence Computer Science > Computational linguistics Computer Science > Machine learning Computer Science > Machine translating |
DCU Faculties and Centres: | DCU Faculties and Schools > Faculty of Engineering and Computing > School of Computing Research Initiatives and Centres > ADAPT |
Published in: | Proceedings of Machine Translation Summit XVIII: Research Track. . Association for Computational Linguistics (ACL). |
Publisher: | Association for Computational Linguistics (ACL) |
Official URL: | https://aclanthology.org/2021.mtsummit-research.5 |
Funders: | Science Foundation Ireland (SFI) Research Centres Programme (Grant 13/RC/2016), European Regional Development Fund, Munster Technological University |
ID Code: | 28341 |
Deposited On: | 18 May 2023 13:45 by Seamus Lankford . Last Modified 18 May 2023 13:45 |
Documents
Full text available as:
Preview |
PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Creative Commons: Attribution-No Derivative Works 4.0 563kB |
Downloads
Downloads
Downloads per month over past year
Available Versions of this Item
- Transformers for low-resource languages: Is féidir linn! (deposited 18 May 2023 13:45) [Currently Displayed]
Archive Staff Only: edit this record