Clarke, Aisling M. (2007) Optical pulse processing towards Tb/s high-speed photonic systems. PhD thesis, Dublin City University.
Abstract
Due to the continued growth of high-bandwidth services provided by the internet, there is a requirement to operate individual line rates in excess of 100 Gb/s in next generation optical communications systems. Thus, to implement these high-speed optical networks all-optical processing techniques are necessary for pulse shaping and pulse routing. Two sub-systems (pulse generation and wavelength conversion), which exploit optical processing techniques are explored within this thesis.
Future systems will require high-quality pulse sources and this thesis develops the pulse generation technique of gain switching to provide simple and cost efficient pulse sources. The poor pulse quality typically associated with gain switching is enhanced by developing all-optical methods. The main attribute of the first pulse generation scheme presented is its wavelength tunability over 50 nm. The novelty of the second scheme lies in the ability to design a grating which has a nonlinear chirp profile exactly opposite to the gain-switched pulses. This grating used in conjunction with the gain-switched laser generates transform limited pulses suitable for 80 Gb/s systems. Furthermore the use of a vertical microcavity-based saturable absorber to suppress detrimental temporal pulse pedestals of a pulse source is investigated.
Next generation networks will require routing of data in the optical domain, which can be accomplished by high-speed all-optical wavelength converters. A semiconductor optical amplifier (SOA) is an ideal device to carry out wavelength conversion. In this thesis pulses following propagation through an SOA are experimentally characterised to examine the temporal and spectral dynamics due to the nonlinear response of the SOA. High-speed wavelength conversion is presented using SOA-based shifted filtering. For the first time 80 Gb/s error-free performance was obtained using cross phase modulation in conjunction with blue spectral shifted filtering. In addition an important attribute of this work experimentally examines the temporal profile and phase of the SOA-based shifted filtering wavelength converted signals. Thus the contribution and effect of ultrafast carrier dynamics associated with SOAs is presented.
Metadata
Item Type: | Thesis (PhD) |
---|---|
Date of Award: | November 2007 |
Refereed: | No |
Supervisor(s): | Barry, Liam P. |
Subjects: | Engineering > Optical communication |
DCU Faculties and Centres: | DCU Faculties and Schools > Faculty of Engineering and Computing > School of Electronic Engineering |
Use License: | This item is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 License. View License |
ID Code: | 96 |
Deposited On: | 13 Dec 2007 by DORAS Administrator . Last Modified 19 Jul 2018 14:40 |
Documents
Full text available as:
Preview |
PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
7MB |
Downloads
Downloads
Downloads per month over past year
Archive Staff Only: edit this record