Login (DCU Staff Only)
Login (DCU Staff Only)

DORAS | DCU Research Repository

Explore open access research and scholarly works from DCU

Advanced Search

Deep interactive text prediction and quality estimation in translation interfaces

Hokamp, Christopher M. (2018) Deep interactive text prediction and quality estimation in translation interfaces. PhD thesis, Dublin City University.

Abstract
The output of automatic translation systems is usually destined for human consumption. In most cases, translators use machine translation (MT) as the first step in the process of creating a fluent translation in a target language given a text in a source language. However, there are many possible ways for translators to interact with MT. The goal of this thesis is to investigate new interactive designs and interfaces for translation. In the first part of the thesis, we present pilot studies which investigate aspects of the interactive translation process, building upon insights from Human-Computer Interaction (HCI) and Translation Studies. We developed HandyCAT, an open-source platform for translation process research, which was used to conduct two user studies: an investigation into interactive machine translation and evaluation of a novel component for post-editing. We then propose new models for quality estimation (QE) of MT, and new models for es- timating the confidence of prefix-based neural interactive MT (IMT) systems. We present a series of experiments using neural sequence models for QE and IMT. We focus upon token-level QE models, which can be used as standalone components or integrated into post-editing pipelines, guiding users in selecting phrases to edit. We introduce a strong recurrent baseline for neural QE, and show how state of the art automatic post-editing (APE) models can be re-purposed for word-level QE. We also propose an auxiliary con- fidence model, which can be attached to (I)-MT systems to use the model’s internal state to estimate confidence about the model’s predictions. The third part of the thesis introduces lexically constrained decoding using grid beam search (GBS), a means of expanding prefix-based interactive translation to general lexical constraints. By integrating lexically constrained decoding with word-level QE, we then suggest a novel interactive design for translation interfaces, and test our hypotheses using simulated editing. The final section focuses upon designing an interface for interactive post-editing, incorporating both GBS and QE. We design components which introduce a new way of interacting with translation models, and test these components in a user-study.
Metadata
Item Type:Thesis (PhD)
Date of Award:November 2018
Refereed:No
Supervisor(s):Liu, Qun and van Genabith, Josef
Subjects:Computer Science > Computational linguistics
Computer Science > Machine learning
Computer Science > Machine translating
DCU Faculties and Centres:DCU Faculties and Schools > Faculty of Engineering and Computing > School of Computing
Use License:This item is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 License. View License
Funders:EXPERT, an EU FP7 Marie Curie ITN Project
ID Code:22664
Deposited On:16 Nov 2018 16:26 by Qun Liu . Last Modified 16 Nov 2018 16:26
Documents

Full text available as:

[thumbnail of chris_hokamp_thesis_DORAS_12.9.2018.pdf]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
4MB
Downloads

Downloads

Downloads per month over past year

Archive Staff Only: edit this record