Login (DCU Staff Only)
Login (DCU Staff Only)

DORAS | DCU Research Repository

Explore open access research and scholarly works from DCU

Advanced Search

A generic framework for colour texture segmentation

Nammalwar, Padmapriya (2004) A generic framework for colour texture segmentation. PhD thesis, Dublin City University.

Abstract
This thesis proposes a novel method to combine the colour and the texture for colour texture segmentation. The objective of this research work is to derive a framework for colour texture segmentation and to determine the contribution of colour in colour texture analysis. The colour texture processing is based on the feature extraction from colour-textured images. The texture features were obtained from the luminance plane along with the colour features from the chrominance planes. Based on the above mentioned approach, a method was developed for colour texture segmentation. The proposed method unifies colour and texture features to solve the colour texture segmentation problem. Two of the grey scale texture analysis techniques, Local Binary Pattern (LBP) and Discrete Cosine Transform (DCT) based filter approach were extended to colour images. An unsupervised fc-means clustering was used to cluster pixels in the chrominance planes. Non-parametric test was used to test the similarity between colour texture regions. An unsupervised texture segmentation method was followed to obtain the segmented image. The evaluation of the segmentation was based on the ROC curves. A quantitative estimation of colour and texture performance in segmentation was presented. The use of different colour spaces was also investigated in this study. The proposed method was tested using different mosaic and natural images obtained from VisTex and other predominant image database used in computer vision. The applications for the proposed colour texture segmentation method are, Irish Script On Screen (ISOS) images for the segmentation of the colour textured regions in the document, skin cancer images to identify the diseased area, and Sediment Profile Imagery (SPI) to segment underwater images. The inclusion of colour and texture as distributions of regions provided a good discrimination of the colour and the texture. The results indicated that the incorporation of colour information enhanced the texture analysis techniques and the methodology proved effective and efficient.
Metadata
Item Type:Thesis (PhD)
Date of Award:2004
Refereed:No
Supervisor(s):Whelan, Paul F.
Uncontrolled Keywords:Image analysis; Colour; Texture; Image segmentation
Subjects:Engineering > Electronic engineering
Computer Science > Image processing
DCU Faculties and Centres:DCU Faculties and Schools > Faculty of Engineering and Computing > School of Electronic Engineering
Use License:This item is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 License. View License
ID Code:19175
Deposited On:23 Aug 2013 14:30 by Celine Campbell . Last Modified 23 Aug 2013 14:30
Documents

Full text available as:

[thumbnail of Padmapriya_Nammalwar_20130624091213.pdf]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
6MB
Downloads

Downloads

Downloads per month over past year

Archive Staff Only: edit this record