Ganguly, Debasis ORCID: 0000-0003-0050-7138, Leveling, Johannes ORCID: 0000-0003-0603-4191 and Jones, Gareth J.F. ORCID: 0000-0003-2923-8365 (2011) Query expansion for language modeling using sentence similarities. In: The 2nd Information Retrieval Facility (IRF) Conference, 6th June 2011, Vienna, Austria.
Abstract
We propose a novel method of query expansion for Language Modeling (LM) in Information Retrieval (IR) based on the similarity of the query with sentences in the top ranked documents from an initial retrieval run. In justification
of our approach, we argue that the terms in the expanded query obtained by the proposed method roughly follow a Dirichlet distribution which, being the conjugate prior of the multinomial distribution used in the LM retrieval model, helps the feedback step. IR experiments on the TREC ad-hoc retrieval test collections using the sentence based query expansion (SBQE) show a significant increase in Mean Average Precision (MAP) compared to baselines obtained using standard term-based query expansion using LM selection score and the Relevance Model (RLM). The proposed approach to query expansion for LM increases the likelihood of generation of the pseudo-relevant documents by adding sentences with maximum term overlap with the query sentences for each top ranked pseudorelevant document thus making the query look more like these documents. A per topic analysis shows that the new method hurts less queries compared to the baseline feedback methods, and improves average precision (AP) over a broad range of queries ranging from easy to difficult in terms of the initial retrieval AP. We also show that the new method is able to add a higher number of good feedback terms (the golden standard of good terms being the set of terms added by True Relevance Feedback). Additional experiments on the challenging search topics of the TREC-2004 Robust track show that the new method is able to improve MAP by 5.7% without the use of external resources and query hardness prediction typically used for these topics.
Metadata
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Event Type: | Conference |
Refereed: | Yes |
Uncontrolled Keywords: | sentence based query expansion; SBQE; Mean Average Precision; MAP; Relevance Model; RLM |
Subjects: | Computer Science > Information retrieval |
DCU Faculties and Centres: | Research Initiatives and Centres > Centre for Next Generation Localisation (CNGL) DCU Faculties and Schools > Faculty of Engineering and Computing > School of Computing |
Use License: | This item is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 License. View License |
ID Code: | 16391 |
Deposited On: | 29 Jun 2011 13:50 by Shane Harper . Last Modified 25 Oct 2018 10:26 |
Documents
Full text available as:
Preview |
PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
306kB |
Downloads
Downloads
Downloads per month over past year
Archive Staff Only: edit this record