Appleby, John A.D. (2000) Exponential asymptotic stability for linear volterra equations. Mathematical Proceedings of the Royal Irish Academy . pp. 1-7. ISSN 1393-7197
Abstract
This note studies the exponential asymptotic stability of the zero solution of the
linear Volterra equation
x˙ (t) = Ax(t) + t
0
K(t − s)x(s) ds
by extending results in the paper of Murakami “Exponential Asymptotic Stability
for scalar linear Volterra Equations”, Differential and Integral Equations, 4, 1991.
In particular, when K isi ntegrable and has entries which do not change sign, and
the equation has a uniformly asymptotically stable solution, exponential asymptotic
stability can be identified by an exponential decay condition on the entries of K.
Metadata
Item Type: | Article (Published) |
---|---|
Refereed: | No |
Subjects: | Mathematics > Differential equations |
DCU Faculties and Centres: | DCU Faculties and Schools > Faculty of Science and Health > School of Mathematical Sciences |
Publisher: | Royal Irish Academy |
Official URL: | http://www.ria.ie/publications/journals/ProcAI/100... |
Use License: | This item is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 License. View License |
ID Code: | 16 |
Deposited On: | 26 Oct 2006 by DORAS Administrator . Last Modified 19 Jul 2018 14:40 |
Documents
Full text available as:
Preview |
PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
102kB |
Downloads
Downloads
Downloads per month over past year
Archive Staff Only: edit this record