Login (DCU Staff Only)
Login (DCU Staff Only)

DORAS | DCU Research Repository

Explore open access research and scholarly works from DCU

Advanced Search

Cryptographic Key Distribution In Wireless Sensor Networks Using Bilinear Pairings

Szczechowiak, Piotr (2010) Cryptographic Key Distribution In Wireless Sensor Networks Using Bilinear Pairings. PhD thesis, Dublin City University.

Abstract
It is envisaged that the use of cheap and tiny wireless sensors will soon bring a third wave of evolution in computing systems. Billions of wireless senor nodes will provide a bridge between information systems and the physical world. Wireless nodes deployed around the globe will monitor the surrounding environment as well as gather information about the people therein. It is clear that this revolution will put security solutions to a great test. Wireless Sensor Networks (WSNs) are a challenging environment for applying security services. They differ in many aspects from traditional fixed networks, and standard cryptographic solutions cannot be used in this application space. Despite many research efforts, key distribution in WSNs still remains an open problem. Many of the proposed schemes suffer from high communication overhead and storage costs, low scalability and poor resilience against different types of attacks. The exclusive usage of simple and energy efficient symmetric cryptography primitives does not solve the security problem. On the other hand a full public key infrastructure which uses asymmetric techniques, digital signatures and certificate authorities seems to be far too complex for a constrained WSN environment. This thesis investigates a new approach to WSN security which addresses many of the shortcomings of existing mechanisms. It presents a detailed description on how to provide practical Public Key Cryptography solutions for wireless sensor networks. The contributions to the state-of-the-art are added on all levels of development beginning with the basic arithmetic operations and finishing with complete security protocols. This work includes a survey of different key distribution protocols that have been developed for WSNs, with an evaluation of their limitations. It also proposes Identity- Based Cryptography (IBC) as an ideal technique for key distribution in sensor networks. It presents the first in-depth study of the application and implementation of Pairing- Based Cryptography (PBC) to WSNs. This is followed by a presentation of the state of the art on the software implementation of Elliptic Curve Cryptography (ECC) on typical WSNplatforms. New optimized algorithms for performing multiprecision multiplication on a broad range of low-end CPUs are introduced as well. Three novel protocols for key distribution are proposed in this thesis. Two of these are intended for non-interactive key exchange in flat and clustered networks respectively. A third key distribution protocol uses Identity-Based Encryption (IBE) to secure communication within a heterogeneous sensor network. This thesis includes also a comprehensive security evaluation that shows that proposed schemes are resistant to various attacks that are specific to WSNs. This work shows that by using the newest achievements in cryptography like pairings and IBC it is possible to deliver affordable public-key cryptographic solutions and to apply a sufficient level of security for the most demanding WSN applications.
Metadata
Item Type:Thesis (PhD)
Date of Award:November 2010
Refereed:No
Supervisor(s):Collier, Martin and Scott, Michael
Subjects:Computer Science > Computer software
Engineering > Telecommunication
DCU Faculties and Centres:DCU Faculties and Schools > Faculty of Engineering and Computing > School of Electronic Engineering
Use License:This item is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 License. View License
ID Code:15729
Deposited On:04 Apr 2011 15:51 by Martin Collier . Last Modified 19 Jul 2018 14:51
Documents

Full text available as:

[thumbnail of Piotr-PhD-for-hardbound-binding.pdf]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
10MB
Downloads

Downloads

Downloads per month over past year

Archive Staff Only: edit this record