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GOAL OF WORK PRESENTED IN THIS POSTER
We are investigating the use of artificial Cell Signaling Networks to implement computation, signal processing and (or) 

control functionality. In the following sections we review a number of the research issues which this raises.
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A R T I F I C I A L  L I F E  L A B O R A T O R Y  
D U B L I N  C I T Y  U N I V E R S I T Y

INTRODUCTION

● Cell Signaling networks  (CSNs) are bio-
chemical systems of interacting molecules in 
cells. Typically, these systems take as inputs 
chemical signals generated within the cell or 
communicated from outside. These trigger a 
cascade of chemical reactions that result in 
changes of the state of the cell and (or) 
generate some chemical output, such as 
prokaryotic chemotaxis or coordination of 
cellular division.

COMPUTATION

CSNs & ANALOG COMPUTERS

As a “computational” device, CSNs 
can be compared to analog 
computers:

● CSNs can be modelled with 
systems of continuous differential 
equations

● Analog computers are precisely 
designed to model the operation of a 
target dynamical system by creating 
an “analogous” system which shares 
 the same dynamics

Figure 2: Schematic for the analog computer simulation of the driven constant-force magnitude 
oscilator.

http://physics.mercer.edu/petepag/yoyo.html

ADVANTAGES OF USING CSNs AS MOLECULAR ANALOG COMPUTERS

● CSNs may offer capabilities of high speed and small size that cannot be 
realised with solid state electronic technology. 

● More critically, where it is required to interface computation with chemical 
interaction, a CSN may bypass difficult stages of signal transduction that 
would otherwise be required. This could have direct application in so-called 
“smart drugs” and other bio-medical interventions.

Figure 1:  Schematic representation of bacterial 
chemotaxis signaling pathway, adapted from [1]. 
The output is designated by the tumbling 
frequency which is determined from the input, the 
concentration level of ligand bound to the 
membrane receptors. This signal transduction is 
carried out by the reaction cascade depicted by the 
proteins A, B, R, W, X and Z. Details on chemical 
reactions can be found in [1].

●  CSNs can be regarded as special purpose computers [2]. In 
contrast to conventional silicon-based computers, the 
computation in CSNs is not realized by electronic circuits, but by 
chemically reacting molecules in the cell. 

●  Realising  and evolving  Artificial Cell Signaling Networks 
(ACSNs) may provide new ways to design computer systems for 
a variety of application areas. 

● We are investigating the use of ACSNs to implement: 
computation, signal processing  and (or) control 
functionality. 

EVOLUTION

One way to design ACNs to carry out computations 
is to use artificial evolutionary techniques [3, 4, 
5].  Such techniques are relevant to the study of 
Artificial CSNs because:

• The complex, and unpredictable, interactions 
between different components of CSNs, make it 
very difficult to design them “by hand” to meet 
specific performance objectives.

• Natural evolution shows that in suitable 
circumstances, effective CSNs functionality can be 
achieved through evolutionary processes.

CROSSTALK

“Crosstalk” phenomena happen when signals from 
different pathways become mixed together, see Fig 4. 
In traditional communications and signal processing 
engineering, crosstalk is regarded as a defect. 
However, crosstalk in CSNs may also have potential 
constructive functionalities:

• Adding uncorrelated “noise” to a functional signal may 
improve overall system behaviour. This is well known in 
conventional control systems engineering in the form of 
so-called “dither”. Compare also, [6, 7] on constructive 
biological roles of noise.

F igure 4: Schematic illustration of a 
CSN composed from two distinct 
cell signaling pathways with unique 
input and output, an interaction 
between pathways occurs as 
molecule y interacts with xn, this 
modulates the output ofpathway X.

• Crosstalk may provide a way of creating a large space of possible 
modifications / interactions between signaling pathways. Thus, although 
many cases of crosstalk may be immediately negative in their impact, 
crosstalk may still be a key mechanism in enabling incremental 
evolutionary search  for more elaborate or complex cell signaling 
networks.`

F igure 3: A: Flowchart of the Lakhesis evolutionary 
algorithm adapted from [5], the initial population of 
networks is randomly generated referring to genetic 
diversity. Fitness computation is obtained by: solving 
ODEs which allows one to compute steady states of 
the network, then the deviation of each node is 
calculated according to the mathematical 
computation we want the network to perform. 
Selection implies removal of unfit networks and 
reproduction correspond to asexual reproduction 
where mutation operators are applied. This process is 
repeated until we get a correct network performing 
the desired mathematical function. 

ROBUSTNESS

● It is argued that key properties in biochemical 
networks are to be robust, this is so as to ensure their 
correct functioning [8]. 

● Alon et al. demonstrated from studying E. coli 
chemotaxis that molecular interactions can exhibit 
robustness [9, 10]. In this case it means that after a 
change in the stimulus concentration (input), the 
tumbling frequency (output) managed to reach a 
steady state that is equivalent to the pre-stimulus 
level. 

F igure 5: Representation of dynamic responses of a 
system to a stimuli taken from [13]. No adaptation 
is observedwhen the system response attains a new 
steady state following the change in input. Partial 
adaptation describe a partial recovery, the 
difference between the initial state and the new 
state is lower than the one observed in the previous 
case. Perfect adaptation is met when the system is 
able to come back to its initial state

FUTURE WORK

We want to address a number of questions:

• How to evolve systems of ACSNs that control each other?
• How to investigate the ability of those systems to create and sustain specific 
internal conditions (homeostasis)?
• How to investigate and quantify the robustness of such systems to external 
shocks and changes of conditions?
• How to transfer insights from this work to build more resilient “self-
repairing” and adaptive control-systems?
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