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Abstract. In this work, we approach the problem of cardiac Magnetic
Resonance Imaging (MRI) image reconstruction from undersampled k-
space. This is an inherently ill-posed problem leading to a variety of
noise and aliasing artifacts if not appropriately addressed. We propose
a two-step double-stream processing pipeline that first reconstructs a
noisy sample from the undersampled k-space (frequency domain) using
the inverse Fourier transform. Second, in the spatial domain we train a
denoising GNA-UNET (enhanced by Group Normalization and Atten-
tion layers) on the noisy aliased and fully sampled image data using the
Mean Square Error loss function. We achieve competitive results on the
leaderboard and show that the algorithmic combination proposed is ef-
fective in high-quality MRI reconstruction from undersampled cardiac
long-axis and short-axis complex k-space data.

Keywords: Cardiac MRI · Undersampled k-space · Deep Learning ·
Denoising UNET.

1 Introduction

In clinical diagnostics, Magnetic Resonance Imaging (MRI) is a widely used
non-invasive medical imaging modality providing superior soft tissue contrast.
Cardiac MRI, in particular, offers the opportunity for the diagnosis of cardiovas-
cular disease. The long acquisition time in MRI remains a major weakness of the
approach. The undersampling of k-space by different factors (also known as the
compressed sensing (CS) approach [10]) offers accelerated data collection provid-
ing discomfort relief for paediatric patients. In addition to the motion artifacts
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inherently present in cardiac MRI, the process of frequency domain undersam-
pling results in the loss of high-frequency information [11], which translates to a
variety of noise and structural aliasing artifacts in the spatial domain, and thus
further deteriorates the reconstructed image quality.

A simple and a straightforward approach to denoising and artifact removal is
to use a deep learning (DL) model, e.g. a Convolutional Neural Network (CNN),
in the spatial domain to map a noisy aliased MR image to a higher-quality
aliasing-free image. In fact, deep learning (DL) became an irreplaceable tool in
MRI reconstruction and most DL approaches treat it as a denoising problem
while some propose to directly complete the missing and corrupted k-space data
using specially designed interpolation CNNs [7] or Transformers [8]. Some chal-
lenges still remain such as degraded performance of such models due to the high
level of noise or limited training data and limited computational resources.

The work reported in this paper was conducted as part of the CMRxRecon
challenge, Task 1: Cine reconstruction, and specifically we target high-quality
MR image reconstruction in spatial domain. Our contribution is primarily in de-
signing an effective double-stream pipeline to process the undersampled complex
k-space data and to reconstruct the CMR images.

2 Related Works

Recently, end-to-end DL approaches have tried to solve the inverse problem of
reconstructing MR images from sub-Nyquist sampled data [12]. For example,
Wang et al. [13] trained a CNN based model using a large number of existing
high quality MR images from downsampled reconstruction images as either an
initialization or regularization term in classical CS approaches, to learn fully
sampled reconstruction. Kwon et al. (2017), utilized a multilayer perceptron
for fast reconstruction of MR images [14]. Lee et al. (2018), trained a residual
network for phase and magnitude information separately to perform MR im-
age reconstruction [15]. Numerous studies have incorporated the MRI domain
knowledge, such as data consistency in the space to improve the standard deep
learning algorithms for CS-MRI [16]. Some research used generative adversar-
ial networks (GANs) [17]. Others used k-space reconstruction neural networks
trained on autocalibration signal (ACS) data [18]. Typically, DL based methods
require a large amount of training data, so several studies have tried to employ
untrained CNNs such as Deep Image prior and Deep encoder and their variants
[19–21]. More recently the MR image reconstruction research has shifted to using
an unrolled framework with DL models because of better reconstruction perfor-
mance and faster reconstruction times compared to iterative methods [22–24].
However, these approaches still rely on fully sampled scans as the ground truth
data while overall it is preferable to reduce reliance on data.

In order to increase data efficiency, recent work has proposed designing data
augmentation pipelines specifically suited to accelerated MRI reconstruction
with appropriate image-based [25] or acquisition-based, physics-driven trans-
formations [26]. These pipelines would supplement prior proposals that utilize
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Fig. 1. Architecture of the proposed double-stream cardiac MRI reconstruction
pipeline. Our proposed design involves processing the long-axis (LAX) and short-axis
(SAX) data streams separately. Also, in the training phase we train the CNNs using
the MSE loss function only on the AccFactor10 undersampled data. Inspired by the
results from [9], we hypothesize that because the ×10 acceleration factor is the most
sparse one it results in strongest structural artifacts. Therefore a model trained on the
fully sampled (FS) and AccF10 data can also be applied to the factor ×4 (AccF04)
and factor ×8 (AccF08) undersampled data during the inference phase.

prospectively undersampled (unsupervised) data that currently lag in reconstruc-
tion performance [21]. However, data augmentation places an additional burden
on the neural network by requiring it to learn every conceivable scale of every
feature separately, even though it just attempts to approximate equivariance.
The outcomes of such acquired equivariance are frequently worse than those of
assured equivariance [27]. Therefore, scale-equivariant CNNs have been gaining
traction in improving the data efficiency [28, 29].

3 Architecture

The original data are a complex k-space with different subsampling (acceleration)
factors such as ×4, ×8, and ×10. Subsampling masks and fully sampled k-space
are also provided in the training set. A diagram of our processing pipeline is
illustrated in Fig. 1. The pipeline operates directly on k-space data by converting
frequency domain into spatial domain using the inverse Fourier transform and
uses aliased undersampled images and the fully sampled images from the spatial
domain to train a CNN.

We process the long-axis (LAX) and short-axis (SAX) k-space data in two
separate but identical data streams due to our empirical observation during
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experimentation that training two models on separate LAX and SAX data yields
better results.

3.1 GNA-UNET with Group Normalization and GCT Attention

In the medical imaging domain, a UNET model is probably the most well
known supervised deep learning architecture that was initially introduced by
Ronneberger et al. in 2015 [3] and since then has found its applications in many
downstream tasks such as image segmentation and image to image translation
[6]. Furthermore, the concept of UNET is essential to recent Transformer ar-
chitectures [5] and Denoising Diffusion Probabilistic Models (DDPM) [4]. In a
nutshell, it is a symmetric encoder-decoder architecture consisting of contracting
and an expanding branches and skip connections that enable sharing of infor-
mation. Another remarkable property of UNET is that this model is known to
be able to perform well with limited training data [31]. Here, we work with 2D
slices and build a 2D GNA-UNET with the configuration outlined in Table 1. In
particular, we design a GNA-UNET with five downsampling/upsampling stages.

Table 1. GNA-UNET configuration developed in this work.

Module Shape (in_channels, out_channels)
encoder block (1,64)
encoder block (64,128)
encoder block (128,256)
encoder block (256,512)
encoder block (512,1024)
conv_block (1024,2048)
decoder block (2048,1024)
decoder block (1024,512)
decoder block (512,256)
decoder block (256,128)
decoder block (128,64)
output (64,1)

Our GNA-UNET model is first enhanced by the Group Normaliza-
tion (GN) layers [30]. This is motivated by the fact that we are using a small
batch_size=2 in our experiments. As has been shown in [30], GN outperforms
commonly used Batch Normalization (BN) for small batch sizes. In particular,
GN divides the channels into groups and computes within each group the mean
and variance for normalization. Our Ablation study in Section 4.6 demonstrates
the effectiveness of GN as compared to BN.

Second, we introduce Gated Channel Transformation (GCT) at-
tention layers into GNA-UNET. GCT attention has been shown to improve
the discriminability of deep CNNs by leveraging the relationship among channels
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Fig. 2. Simplified diagram of the Gated Channel Transformation (GCT) attention
layer. The weight parameter α controls the weight of each channel before the channel
normalization. The gating weight and bias, γ and β, are responsible for adjusting the
scale of the input feature Z channel-wisely. Image source: adapted from [32].

[32]. In particular, we add GCT layers after each convolutional conv2d layer and
in the skip connections. This configuration has been determined by our Ablation
study in Section 4.6. The overview diagram of GCT is given in Fig.2 where α, β
and γ are trainable parameters. As shown by the authors, GCT layer inserted far
away from the network output, reduces the variance of input features and thus
encourages cooperation among channels and avoids excessive activation values or
loss of useful features. The GCT consists of Global Context Embedding module
that exploits global contextual information ooutside the small receptive fields of
convolutional layers. The trainable embedding weight α controls the weight of
each channel. The Channel Normalization module uses l2-based channel normal-
ization. The scalar

√
C is used to normalize the scale, with C being the number

of channels. The Gating Adaptation module is used to adapt the original feature.
GCT can facilitate competition and cooperation during the training process by
introducing the gating mechanism with tanh activation function. Gating weight
γ and the gating bias β are trainable parameters.

To regularize our model, we further add Dropout layers with Dropout prob-
ability p = 0.25 in each of five encoder blocks. Without the Dropout layers, the
model starts overfitting from the very beginning of the training phase.

Thus, our encoder block consists of conv_block(in_channels, out_channels)
→ Dropout(p = 0.25) → MaxPooling2d(2,2) layers.

A convolutional block conv_block consists of the following layers: conv2d
(kernel_size=3, padding=1) → GCT → GN(ng) → conv2d (kernel_size=3,
padding=1) → GCT → GN(ng) → ReLU. Where GN(ng) is a group normal-
ization layer with the number of groups hyperparameter ng = 8 determined in
Section 4.6, and ReLU is the Rectified Linear Unit activation function.

The decoder block mirrors the encoder block in reverse and consists of
the combination of the transposed convolution layer ConvTranspose2d (ker-
nel_size=2, stride=2, padding=0) → conv_block.

The total number of learnable GNA-UNET parameters is 124,427,137.
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3.2 Loss function

We use the Mean Square Error (MSE) as the objective function to update the
model parameters:

LossMSE =
1

N

N∑
i=1

(yi − ŷi)
2 (1)

where N is the number of pixels in the image, and yi and ŷi represent the target
and reconstructed images.

4 Methodology

In order to be able to obtain quantitative validation metrics, we perform our
experiments on the training and validation sets of CMRxRecon challenge data
which contain the long-axis and short-axis fully sampled and undersampled im-
ages of 120 and 60 patients, respectively. We do not use the sampling masks.

4.1 Preprocessing

We process 1-channel 2D greyscale images in the spatial domain first and after
performing the IFFT, we rescale by the maximum image intensity and then
apply the linear scaling transform to map the pixel intensity I into I ∈ [0, 1]:

I =
(I − Imin)

(Imax − Imin)
(2)

While the IFFT operates on the original k-space resolutions, we resize all recon-
structed images to 512× 512 pixels as an input to the GNA-UNET model.

4.2 Dataset

A total of 300 healthy volunteers from a single center were included in this
study. The released dataset [34] includes 120 volunteers for training data, 60
for validation data and 120 for test data. Training data includes fully sampled
k-space data, auto-calibration lines (ACS, 24 lines) and undersampled k-space
with acceleration factors ×4, ×8 and ×10.

4.3 Implementation and training details

The processing pipeline was implemented in Python 3.9 and the DL open source
library Pytorch 2.0.1. All experiments were performed on a desktop computer
with the Ubuntu operating system 18.04.3 LTS with the Intel(R) Core(TM)
i9-9900K CPU, Nvidia GeForce RTX 2080 Ti GPU, and a total of 62GB RAM.

We train the GNA-UNET for 300 epochs using an AdamW optimizer [33] with
a learning rate of lr = 0.001. We use the batch size of 2. No data augmentation
was used in the training phase.
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4.4 Performance evaluation metrics

Mean Square Error (MSE) is the most widely used image quality assessment
metric with better values closer to zero. The MSE and the normalized MSE
(NMSE) between two images ŷ and y are defined as follows:

MSE =
1

MN

M∑
m=1

N∑
n=1

[ŷ(n,m)− y(n,m)]2 (3)

NMSE = 1− ||y − ŷ||2
||y − y||

, y =
1

N

∑
i

yi (4)

Peak Signal to Noise Ratio (PSNR) is defined as the ratio between the max-
imum possible signal power and the power of the distorting noise. This ratio
between two images is computed in the decibel form as [2]:

PSNR = 10 log10(peakval
2)/MSE (5)

where peakval is the maximum possible intensity value in an image.
The Structural Similarity Index Measure (SSIM) is a perception-based model

that captures the mutual dependencies among adjacent pixels to assess the sim-
ilarity of two images, such as brightness, contrast and structural properties [1]:

SSIM(y, ŷ) =
(2µyµŷ + c1)(2σyŷ + c2)

(µ2
y + µ2

ŷ + c1)(σ2
y + σ2

ŷ + c2)
(6)

where µy and µŷ represent the mean values of the model output ŷ and the
target output y, σy and σŷ denote the corresponding pixel variance values and
σyŷ is the covariance value. In order to stabilize the division, and with P =
max(y)−min(y), the constants c1 and c2 are defined as follows:

c1 = (0.01P )2, c2 = (0.03P 2) (7)

4.5 Experimental results

To allow fast experimentation, we do not use all training data provided but con-
struct two training subsets as follows. For subset S1 (single coil) and subset M1

(multi coil), we process all timeframes and sz slices in the supplied cine_lax.mat
and cine_sax.mat files. We further randomly subsample each full training set
and select 1,000 LAX and 1,000 SAX images for training.

Table 2 shows our best results on the validation set provided by the chal-
lenge platform while Table 3 shows validation results obtained by using a sim-
ple denoising Autoencoder model (DAE) with the encoder-bottleneck-decoder
architecture, i.e. without skip connections. Two large DAE models each with
131,282,057 learnable parameters were trained on 128 × 128 resized LAX and
SAX images. The comparison between Tables 2 and 3 shows that GNA-UNET
based processing outperforms the DAE model by a large margin. We think that
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Table 2. Our best results on the CMRxRecon validation set using GNA-UNET.

Modality/Metric SSIM ↑ NMSE ↓ PSNR ↑ Modality/Metric SSIM ↑ NMSE ↓ PSNR ↑
Single_LAX_04 0.5505 0.1514 21.9632 Multi_LAX_04 0.5933 0.1358 22.5673
Single_LAX_08 0.5683 0.1506 22.1463 Multi_LAX_08 0.6121 0.1285 23.3891
Single_LAX_10 0.5677 0.1536 22.0728 Multi_LAX_10 0.6323 0.1399 21.8900
Single_SAX_04 0.6003 0.2004 22.1731 Multi_SAX_04 0.5903 0.2017 22.0045
Single_SAX_08 0.6116 0.1995 22.3188 Multi_SAX_08 0.6520 0.1541 22.9344
Single_SAX_10 0.6153 0.1991 22.3178 Multi_SAX_10 0.6699 0.2087 23.3594
Cine average 0.5856 0.1757 22.1653 Cine average 0.6250 0.1614 22.6908

Table 3. Results on the CMRxRecon validation set (single coil) by using the DAE
model (trained for 100 epochs) as a denoising CNN.

Modality/Metric SSIM ↑ NMSE ↓ PSNR ↑
Single_LAX_04 0.3047 0.7520 15.6542
Single_LAX_08 0.3054 0.7422 15.6861
Single_LAX_10 0.3051 0.7448 15.6745
Single_SAX_04 0.3218 1.1617 14.6089
Single_SAX_08 0.3227 1.1517 14.6522
Single_SAX_10 0.3228 1.1466 14.6672
Cine average 0.3137 0.9498 15.1572

this is due to the absence of encoder-decoder skip connections. The results for
the multi coil data are some way off the top of the leaderboard, and we are
currently trying to better understand why this might be the case with a view to
solving this problem in future work.

Selected qualitative results are shown in Fig. 3. While working with the single
coil data on a subset of the training set, we obtained high PSNR = 35.8596dB
however when evaluating on the validation set provided by the challenge plat-
form, our best PSNR = 22.3188dB was much lower. This shows that despite the
regularization, our model does not yet generalize well to the new unseen data.

Our results on the test set are: PSNR = 34.4493dB, SSIM = 0.921
and NMSE = 0.0563.

4.6 Ablation studies

We perform two ablations studies to first demonstrate the effectiveness of the
Group Normalization (GN) and second the effectiveness of the Gated Channel
Transformation (GCT) attention unit. Both ablation studies were performed on
a random subset of the TrainingSet of the CMRxRecon dataset with the 70%-
10%-20% non-overlapping training-validation-test split.

We tune the hyperparameters of the Group Normalization layers and report
the best result based on five training runs. The base model in Table 4 refers to
the encoder-decoder structure with skip connections without the Batch Normal-
ization (BN) layers. It can be seen that the model performs poorly without any
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Fig. 3. Selected qualitative results (single coil, patient P002). First row: long-axis im-
ages. Second row: short-axis images. Left: ground truth; Middle: undersampled Acc-
Factor10; Right: reconstructed images using our GNA-UNET pipeline.

type of normalization. The addition of BN layers results in 12.66dB PSNR gain
while the addition of GN layers results in 14.56dB PSNR gain (with ng = 8)
relative to the base model. Interestingly, the best performing hyperparameter
ng = 8 is fixed for all convolutional blocks. We have also investigated such con-
figuration as 2−4−8−16−32−64 in the encoder with the reverse configuration
64 − 32 − 16 − 8 − 4 − 2 in the decoder. This type of configuration resulted in
a slightly worse performance. The addition of GCT layers results in a marginal
improvement over the use of GN layers as can be seen in Table 5. The position of
GCT layers, as well as the normalization norm and the gating function influence
performance.

5 Conclusion

In this paper, we report the research carried out as part of our participation in the
exciting CMRxRecon challenge, Task 1: Cine reconstruction. While not reaching
the top of the leaderboard, we achieved competitive results on the validation set
using a double-stream processing pipeline including the IFFT and a denoising
GNA-UNET model with Group Normalization and GCT attention layers. We
also verified that GNA-UNET outperforms the denoising Autoencoder by a large
margin (7.5336dB PSNR gain). Our ongoing work is centered around the use
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Table 4. Ablation study to demonstrate the effectiveness of Group Normalization
(GN) layers instead of Batch Normalization (BN) layers. All investigated fixed number
of groups (ng) values consistently outperform BN. The best value ng = 8 corresponds
to 1.9dB PSNR gain relative to the use of BN.

Configuration SSIM ↑ MSE ↓ PSNR ↑
base model 0.3759 0.00781 21.2789
base model with Batch Normalization 0.9152 0.0004722 33.9389
base model with Group Normalization
ng = 2 0.9322 0.0003059 35.7680
ng = 4 0.9333 0.0003118 35.6037
ng = 8 0.9335 0.0002984 35.8393
ng = 16 0.9244 0.0003304 35.2098
ng = 32 0.9302 0.0003147 35.4652
ng = 64 0.9285 0.0003631 34.8299
ng = 2− 4− 8− 16− 32− 64 0.9257 0.0003041 35.6154
ng = 64− 32− 16− 8− 4− 2 0.9285 0.0003816 34.7310

Table 5. Ablation study to demonstrate the effectiveness of GCT layers.

Position SSIM ↑ MSE ↓ PSNR ↑
after each conv2d layer 0.9333 0.0002983 35.8570
only in the skip connections 0.9326 0.0003062 35.8225
only in the bottleneck 0.9318 0.0003412 35.4324
after each conv2d layer and in the skip connections 0.9346 0.0002969 35.8596

Table 6. Our model information. Performance on a training set shows PSNR, SSIM
and MSE values while performance on a validation set shows PSNR, SSIM and NMSE
values. Inference time is given per patient and includes LAX and SAX processing time.

Task of participation Task1: Cine Use of pre-training No
University/organization Insight SFI Centre Data augmentation No
Single- or multi-channel Single Data standardization No
Hardware configuration RTX 2080 Ti GPU Model parameters 124,427,137
Training time 9 hours Loss function MSE
Inference time 13.27 sec Physical model No
Performance on a train. set (35.86, 0.93, 0.00029) Use of unrolling No
Performance on a val. set (22.17, 0.59, 0.17) k-space fidelity No
Docker submitted? Yes Model backbone UNET
Use of segmentation labels No Operations Amplitude

of generative denoising diffusion probabilistic models and k-space interpolation
methods for the cine reconstruction on the dataset provided.
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