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Abstract
A hallmark of subclinical atherosclerosis is the accumulation of vascular smooth muscle cell (SMC)-like cells leading to intimal
thickening and lesion formation. While medial SMCs contribute to vascular lesions, the involvement of resident vascular stem
cells (vSCs) remains unclear. We evaluated single cell photonics as a discriminator of cell phenotype in vitro before the presence
of vSC within vascular lesions was assessed ex vivo using supervised machine learning and further validated using lineage
tracing analysis. Using a novel lab-on-a-Disk(Load) platform, label-free single cell photonic emissions from normal and injured
vessels ex vivo were interrogated and compared to freshly isolated aortic SMCs, cultured Movas SMCs, macrophages, B-cells,
S100β+ mVSc, bone marrow derived mesenchymal stem cells (MSC) and their respective myogenic progeny across five
broadband light wavelengths (λ465 - λ670 ± 20 nm). We found that profiles were of sufficient coverage, specificity, and quality
to clearly distinguish medial SMCs from different vascular beds (carotid vs aorta), discriminate normal carotid medial SMCs
from lesional SMC-like cells ex vivo following flow restriction, and identify SMC differentiation of a series of multipotent stem
cells following treatment with transforming growth factor beta 1 (TGF- β1), the Notch ligand Jagged1, and Sonic Hedgehog
using multivariate analysis, in part, due to photonic emissions from enhanced collagen III and elastin expression. Supervised
machine learning supported genetic lineage tracing analysis of S100β+ vSCs and identified the presence of S100β+vSC-derived
myogenic progeny within vascular lesions. We conclude disease-relevant photonic signatures may have predictive value for
vascular disease.
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Introduction

Cardiovascular disease (CVD), the leading cause of death and
disability world-wide, is characterized by pathological struc-
tural changes to the blood vessel wall [1]. A hallmark is the
accumulation of smooth muscle cell (SMC)-like cells leading
to intimal medial thickening (IMT) and the obstruction to
blood flow that may culminate in a heart attack or stroke [2].
Observations in humans vessels confirm that early ‘transition-
al’ lesions enriched with SMC-like cells are routinely present
in atherosclerotic-prone regions of arteries during pathologic
intimal thickening, lipid retention, and the appearance of a
developed plaque [3]. Endothelial cell (EC) dysfunction due
to disturbed blood flow is classically associated with the de-
velopment of atheroprone lesions [4] and is routinely
modelled in mouse carotid arteries following flow restriction
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caused by ligation [5]. These lesions can further develop into
advanced atherosclerotic plaques in ApoE knockout mice on
Western diets [6].

Label-free technologies for bio-analytical applications
have attracted recent attention. Several different classes of
label-free sensor detectors are being developed including
plasmonic, electrical, mechanical, and photonic (light)
sensors [7]. Light as a diagnostic and prognostic tool
has several potential advantages including high sensitivi-
ty, non-destructive measurement, non-invasive analysis
and low limits of detection [7]. The innate optical re-
sponse comprises scattering, absorbance, and auto-
fluorescence signals that are closely associated with me-
tabolism [8] and structural proteins [9] under normal, al-
tered or pathological conditions, while fluorescence has
been proposed as a non-invasive indicator of embryonic
stem cell differentiation state [10]. In combination with
microfluidics, photonics enables real time measurement
of single cells in very small sample volumes [11]. In this
context, we have developed label-free photonic technolo-
gies with highly efficient cell-to-light coupling that have
been successfully deployed to measure the real-time re-
sponse of individual cells in a population [12]. To accom-
pany these photonic platforms, deep learning, a subset of
machine learning based primarily on artificial neural net-
work geometries, has rapidly grown as a predictive

method to obtain real-time bio-photonic decision-making
systems and analyze bio-photonic data, in particular, spec-
troscopic data including spectral data pre-processing and
spectral classification [13].

Several key modulators of vascular SMC phenotype and
fate have been reported. Transforming growth factor
(TGF-β1) is a cytokine regulating myogenic differentiation
that is released by both inflammatory cells and vascular cells
[endothelial (EC) and SMC] [14, 15] within the vessel wall
and has been implicated in the etiology of atherosclerosis [16],
vessel restenosis [17], and the development of the neointima
[18]. Similarly, Notch and Hedgehog signalling components
are secreted as pro-atherogenic stimuli to promote lesion for-
mation [19–22].

Herein, we utilised a novel LoaD platform to measure
label-free single cell photonic emissions across five broad-
band light wavelengths (λ465 - λ670 ± 20 nm) from normal
and injured vessels ex vivo and compared them to freshly
isolated aortic SMCs, cultured Movas SMCs, macrophages,
B-cells, S100β+ resident mVSc, and bone marrow derived
mesenchymal stem cells (MSC) and their respectivemyogenic
progeny. We then combined single cell photonics with super-
vised machine learning using multilayer perceptron (MLP)
neural network analysis and linear discriminant analysis
(LDA) of these trained datasets, in conjunction with lineage
tracing of S100β+ mVSc in vivo, to examine the cellular het-
erogeneity of vascular lesions following iatrogenic flow
restriction.

Results

Single Cell Photonics of Cells fromNormal and Injured
Vessels Ex Vivo

Flow restriction following carotid artery ligation resulted in a
significant increase in adventitial and intimal volumes after
14 days when compared to sham control [Fig. 1a, b] concom-
itant with a significant reduction in the number of Myh11+

positive cells and expression of Myh11 in protein lysates
[Fig. 1c, d]. In contrast, medial and intimal SMC-like cells
maintained expression of smooth muscle cell α-actin(SMA)
[Fig. 1c]. Medial cells were isolated and single cell photonic
profiles of individual cells ex vivo were measured following
capture on V-cups using a centrifugal Lab-on-a-Disc(LoaD)
platform, as previously described [12] [Fig. 1e], and
visualised by phase contrast microscopy on each V-cup [Fig.
1f]. The Log10 autofluorescence emissions of 356 cells from
6 animals/group were recorded across five broadband light
wavelengths (λ465, λ530, λ565, λ630 and λ670 with a band-
width of 20 nm) [Fig. 1g] and corrected as Log2 fold increase
over background [Fig. 1h]. The photonic intensity of single
cells from the ligated vessels ex vivo was significantly

�Fig. 1 Single cell photonics from normal and injured vessels ex vivo
following flow restriction. (a). Representative haematoxylin and eosin
(H&E) staining of LCA from sham and ligated vessels 14 days post-
ligation (A: Adventitia, M: Media, I:Intima and NI:Neointima). (b).
Morphometric analysis of adventitial, medial and intimal volumes within
the LCA in sham and ligated arteries; (#p≤0.05, n=3). (c). Representative
immunohistochemical analysis of Myh11 (red) and α-actin expression
(red) and DAPI nuclei staining (blue) in adventitial, medial and intimal
layers of the LCA from sham and ligated carotid arteries. (d).
Representative immunoblot of Myh11 expression in the LCA from sham
and ligated carotid artery (n=3). (e). Schematic of capture of individual
cells using the LoaD platform. (f). Representative image of formalin-
fixed cells from sham and ligated vessels captured on a V-cup using the
LoaD platform. (g). Single cell auto-fluorescence photon emissions
across five broadband light wavelengths (λ465, λ530, λ565, λ630 and
λ670 nm with a bandwidth of 20 nm) from sham and ligated LCA
ex vivo. Data are the mean ± SEM of Log10 photons from 178 cells/
group from 6 pooled vessels, #p≤0.001 vs sham. (h). Log2 fold increase
over background of single cell photon emissions from sham and ligated
LCA. Data are the mean ± SEM of 178 cells/group from 6 pooled vessels,
#p≤0.001 vs sham. (i). PCA biplots of single cell photon analysis from
sham (black) and ligated (orange) vessels. Each λ variable is representa-
tive of the eigenvectors (loadings). (j). PCA loading plots of single cell
photon analysis from sham (black) and ligated (orange) cells ex vivo
compared to Ramos B cells in vitro (red). Data are from 411 cells across
the five wavelengths. (k). LDA plots of single cell photons from sham
(black) and ligated (orange) vessels. (l). Confusion matrix of true class
representing the given group assignment and predicted class representing
the estimated group assignment following a leave-one-out cross-
validation procedure
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enhanced at the first 3 wavelengths (λ465, λ530 and λ565)
when compared to single cells from sham-operated control
vessels [Fig. 1g, h]. Principal component analysis (PCA) re-
vealed that the photonic profile at λ565 had a significant in-
fluence on the PC1 components [Fig. 1i] with significant di-
vergence from other variables suggesting that this variable
was poorly correlated with other wavelengths [Fig. 1j].
Linear discriminant analysis (LDA) revealed that the photonic
profile of cells from sham and ligated vessels could be easily
separated from each other across the five wavelengths [Fig.
1k]. Confusion matrices revealed that 88% of the sham cells
were classified as similar to each other with only a small
proportion of cells classified as similar to cells from ligated
vessels [Fig. 1l]. In contrast, 21% of ligated cells were classi-
fied as similar to sham cells with an accuracy of 86.2% on a
cross-validatedleave-one-out basis [Fig. 1l].

These data indicate that single-cell autofluorescence emis-
sions across five wavelengths ex vivo are of sufficient cover-
age, specificity and overall quality to unambiguously identify
the majority of carotid artery cells from sham vessels as dif-
ferentiated Myh11+, SMA+ contractile SMCs. In contrast, the
majority of cells from injured vessels exhibit a distinct spectral
profile with a minority of cells similar to differentiated SMCs
from sham animals ex vivo.

Single Cell Photonics of B-Cells and Macrophages
In Vitro

To confirm that photonics can discriminate disparate cell phe-
notypes, single cell photonic measurements were recorded in
human B lymphocytes (Ramos B) and murine macrophages
(J774A.1) across the same five wavelengths and visualised by

phase contrast microscopy on each V-cup [Suppl Fig. 1a].
Multivariate analysis demonstrated that single cells clustered
tightly and away from each other [Suppl Fig. 1b] while both
cell types could be easily separated from each other [Suppl
Fig. 1c]. When compared to cells from sham and ligated ves-
sels [Suppl Fig. 1d-g], Ramos B and J774A.1 cells clustered
away from these cells and were easily separated from each
other [Suppl Fig. 1h-j]. These data indicate that single-cell
photonics clearly identifies lymphocytes and macrophages
as distinct cell populations compared to isolated cells of sham
and ligated vessels.

Single Cell Photonics of Aortic SMCs Ex Vivo and
Cultured SMCs

To test whether differentiated SMCs differ in their photonic
profile from de-differentiated SMCs in culture, freshly isolat-
edmouse aortic SMCs ex vivo and sub-culturedMovas SMCs
in vitro were visualised by phase contrast microscopy on each
V-cup [Fig. 2a] before single cell photonic emissions were
recorded. Both cell types had similar photonic intensities
across most wavelengths [Fig. 2b] but had lower photonic
intensities when compared to Ramos B cells [Fig. 2c] and
were clearly separated by LDA on a cross-validatedleave-
one-out basis with 87.8% accuracy [Fig. 2d]. Multivariate
analysis demonstrated that a fraction ofMovas SMC clustered
towards aortic SMCs with a proportion of Movas SMC clas-
sified similar to aortic SMCs [Fig. 2e].

To determine if differentiated SMCs differ between vascu-
lar beds (aortic vs carotid), the photonic profile of freshly
isolated aortic SMCs and Movas SMCwere compared to nor-
mal and ligated carotid artery cells ex vivo. Aortic SMCs and
Movas SMC had similar photonic intensities to carotid artery
SMCs across most wavelengths [Fig. 2f, g] but exhibited low-
er photonic intensities compared to cells of ligated vessels
[Fig. 2h, i]. Multivariate analysis revealed that aortic SMCs
and Movas SMC were distinct to carotid artery SMCs [Fig.
2j, k] and ligated cells [Fig. 2l, m]. Moreover, while a propor-
tion of cells isolated from sham vessels were classified as
similar to Movas SMCs (26%) and aortic SMCs (6%), respec-
tively [Fig. 2n], the majority of cells from ligated vessels were
distinct with an accuracy of 72% on a cross-validatedleave-
one-out basis [Fig. 2o].

Single Cell Photonics of Bone Marrow-Derived
Mesenchymal Stem Cells and their Myogenic Progeny

Single cell photonics of undifferentiated bonemarrow-derived
mesenchymal stem cells (MSCs) were compared to their myo-
genic SMC progeny following stimulation with media supple-
mented with TGF-β1. Myogenic differentiation was con-
firmed by epigenetic, biochemical and immunohistochemical
analysis of cells before and after treatment with TGF-β1

�Fig. 2 Single cell photonics of aortic SMCs ex vivo and cultures aortic
Movas SMCs in vitro. (a). Representative immunohistochemical analysis
of ⍺-actin (SMA) expression in mouse aorta and visualisation of aortic
SMCs andMovas SMCs on each V-cup in the LoaD platform. (b). Single
cell photon emissions across five wavelengths from freshly isolated aortic
SMCs and cultured aortic Movas SMCs in vitro. Data are the Log2 fold
increase and represent the mean ± SEM of 55 cells/group, #p≤0.001. (c).
Single cell photon emissions of aortic and Movas SMCs compared to
Ramos B cells. Data are the Log2 fold increase and represent the mean
± SEM of 55 cells/group, #p≤0.001. (d). LDA plots of aortic SMC (blue),
Movas SMC (red) and Ramos B (black) cells in vitro. Data are from 165
cells across the five wavelengths (e). PCA loading and LDA plots of
aortic SMC and Movas SMC. (f-i). Single cell photon emissions from
(F, H) aortic SMC and (G, I) Movas SMC cells compared to sham (F, G)
and ligated cells (H, I) ex vivo. Data are the Log2 fold increase and
represent the mean ± SEM of 55–178 cells/group, #p≤0.001 vs Sham
(F,G) Ligated (H,I). (j-m). PCA loading plots and LDA of aortic SMCs
(J, L) and Movas SMCs (K, M) compared to carotid artery SMCs (sham)
(J) and ligated cells, respectively. (n). LDA plots of sham (black), ligated
(orange) cells ex vivo compared to aortic SMCs (blue) and Movas SMC
(Red) cells in vitro G. Confusion matrix of true class and predicted class
following a leave-one-out cross-validation procedure by the LDA classi-
fier. Data are from 466 cells across five wavelengths
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[Fig. 3a-d]. Bonemarrow-derivedMSCs treated with TGF-β1
(2 ng/mL) for 7 days increased their expression of SMC dif-
ferentiation markers calponin 1 (Cnn1) and myosin heavy
chain 11 (Myh11) [Fig. 3a, b], concomitant with a significant
increase in the enrichment of the SMC epigenetic histone
mark di-methylation of lysine 3 on Histone 4 (H3K4me2)
[23] and a decrease in the repressive mark tri-methylation of
lysine 27 on Histone 3 (H3K27me3) [24] at the Myh11 locus
[Fig. 3c], and an increase in Cnn1 and Myh11 expression in
protein lysates [Fig. 3d].

Single cell photonic measurements were recorded inMSCs
before and after TGF-β1 treatment for 7, 14 and 28 days,
respectively, and visualised by phase contrast microscopy on
each V-cup [Fig. 3e]. Their photonic profiles were compared
[Fig. 3f-h] and multivariate analysis revealed that MSCs clus-
tered away from their myogenic progeny following

differentiation and could be easily separated from their myo-
genic progeny after 7, 14 and 28 d, respectively [Fig. 3i-k]
while analysis of the combined data confirmed that MSCs and
their myogenic progeny cluster away from each other [Fig. 3l]
and could be separated over time [Fig. 3m] with an accuracy
of 96.3% on a cross-validatedleave-one-out basis [Fig. 3n].
When compared with cells isolated from sham and ligated
vessels ex vivo, the photonic intensity of undifferentiated
MSCs was significantly lower than cells from sham vessels
[Fig. 3o] but increased when these cells were treated with
TGF-β1 for 28d [Fig. 3p], and was significantly higher at
λ630 and λ670 nm when compared to cells from ligated ves-
sels [Fig. 3q]. The increased photonic intensity was not due to
the TGF-β1 itself as TGF-β1-treated Ramos B cells had lower
photonic intensities across all wavelengths, including at
λ565 nm wavelength [Fig. 3r]. Multivariate analysis demon-
strated a clear separation between MSC-derived myogenic
progeny (after 14 and 28d) and cells from ligated vessels
[Fig. 3s], while undifferentiated MSCs and their myogenic
progeny clustered towards cells from sham vessels after 7 d
[Fig. 3t]. Confusion matrices classified 27% of cells from
sham vessels and 3% of cells from ligated vessels as similar
to MSC-derived myogenic progeny, on a cross-
validatedleave-one-out basis with 79.1% accuracy [Fig. 3u].

Multivariate analysis also revealed that MSCs and their
myogenic progeny could be easily separated from Ramos B
cells, while MSCs and their myogenic progeny (7d) clustered
towards J774A.1 cells [Suppl Fig. 2a, b] on a cross-
validatedleave-one-out basis with 92.8% accuracy [Suppl
Fig. 2e], consistent with trans-differentiation of macrophages
to SMCs in culture [25]. Similarly, MSC-derived myogenic
progeny clustered towards aortic SMCs and cultured Movas
SMCs [Suppl Fig. 2c, d] on a cross-validatedleave-one-out
basis with 80.1% accuracy [Suppl Fig. 2F]. Taken together,
these data suggest that single-cell photonics clearly discrimi-
nates MSCs from their myogenic progeny. Moreover, while
SMCs isolated from sham vessels, aortic SMCs, and Movas
SMCs share some similarity with MSC-derived myogenic
progeny, the photonic profile of the majority of cells isolated
from ligated vessels ex vivo was distinct.

Single Cell Photonics of C3H/10 T1/2 Mesenchymal
Stem Cells and their Myogenic Progeny

Myogenic differentiation of C3H/10 T1/2 mesenchymal stem
cells was confirmed before and after TGF-β1 treatment; SMC
differentiation markers Cnn1 and Myh11 increased in re-
sponse to TGF-β1 [Fig. 4a, b] concomitant with a significant
increase in Cnn1 and Myh11 expression in protein lysates
[Fig. 4c] and Cnn1 mRNA levels [Fig. 4d].

Single cells were visualised by phase contrast microscopy
on each V-cup [Fig. 4e] before photonic measurements were
recorded before and after myogenic differentiation with

�Fig. 3 Single cell photonics of murine bone marrow-derived mesenchy-
mal stem cells (mMSCs) before and after myogenic differentiation
in vitro. (a). Representative immunocytochemical analysis of Cnn1
(green), Myh11 (green) and DAPI nuclei staining (blue) in mMSCs be-
fore and after treatment of cells with media supplemented with TGF-β1
(2 ng/mL). (b). The fraction of Cnn1+ and Myh11+ cells before and after
treatment of cells with media supplemented with TGF-β1 (2 ng/mL).
Data are the mean ± SEM of 5 wells, #p<0.05 vs control. (c). Fold
enrichment of the stable SMC histone modification, H3K4me2 and re-
pressive histone modification, H3K27me3 at the Myh11 promoter in
fresh mouse aorta, cultured Movas SMCs and undifferentiated mMSCs
in the absence or presence of TGF-β1 (2 ng/mL) for 7d. Data are mean ±
SEM of a representative experiment performed in triplicate, #p<0.05 vs
control (−) TGF-β1 levels. (d). Log2 fold change in Cnn1 mRNA levels
in mMSCs and representative immunoblot of Cnn1 and Myh11 protein
expression in lysates in response to TGF-β1 (2 ng/mL). Data are mean ±
SEM of n=5, #p≤0.05 considered as significant. (e). Visualisation of
MSCs and their myogenic progeny on each V-cup in the LoaD platform.
(f-h). Single cell photon emissions fromMSCs in the absence or presence
of TGF-β1 (2 ng/mL) for (F) 7 (G) 14 and (H) 28 d in vitro. Data are the
Log2 fold increase and represent the mean ± SEM of 55–79 cells/group,
#p≤0.001. (i-k). LDA plots of MSC (cyan) before and after treatment
with TGF-β1 (2 ng/mL) for 7d (brown), 14d (magenta) and 28d
(purple) cells in vitro. Data are the Log2 fold increase and represent the
mean ± SEM of 55–79 cells/group, #p<0.001. (l-m). Combined PCA
loading plots and LDA of MSCs and MSCs following treatment with
TGF-β1 for 7, 14 and 28d. Data are from 55 to 79 cells/group. (n).
Confusion matrix of true class and predicted class following a leave-
one-out cross-validation procedure by the LDA classifier. Data are from
268 cells across five wavelengths. (o-q). Single cell photon emissions
from MSCs in the absence or presence of TGF-β1 (2 ng/mL) 28 d
in vitro compared to (O,P) sham and (Q) ligated cells ex vivo. Data are
the Log2 fold increase and represent the mean ± SEM of 55–178 cells/
group, #p≤0.001 vs Sham (O,P) Ligated (Q). (r). Single cell photon
emissions from Ramos B cells in the absence or presence of TGF-β1
(2 ng/mL) 14d. Data are the Log2 fold increase and represent the mean
± SEM of 55 cells/group, #p<0.001. S-T. PCA loading plots (s) and LDA
(t) of sham (black), ligated (orange) and MSC (cyan) before and after
myogenic differentiation with TGF-β1 for 7d (brown), 14d (magenta)
and 28d (purple). Data are from 624 cells across 5 wavelengths. (u).
Confusion matrix of true class and predicted class following a leave-
one-out cross-validation procedure by the LDA classifier. Data are from
624 cells across 5 wavelengths
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Fig. 4 Single cell photonics of C3H/10 T1/2 mesenchymal stem cells
before and after myogenic differentiation in vitro. (a). Representative
immunocytochemical analysis of Cnn1 (green), Myh11 (green) and
DAPI nuclei staining (blue) in C3H/10 T1/2 cells before and after treat-
ment of cells with media supplemented with TGF-β1 (2 ng/mL) for 7d.
(b). The fraction of Cnn1

+
andMyh11

+
cells before and after treatment of

cells with media supplemented with TGF-β1 (2 ng/mL). Data are the
mean ± SEM of 5 wells, #p≤0.05 vs control. (c). Representative immu-
noblot of Cnn1 and Myh11 protein expression in C3H/10 T1/2 lysates in
response to TGF-β1 (2 ng/mL). (d). Log2 fold change in Cnn1 mRNA
levels in C3H/10 T1/2 cells in response to TGF-β1 (2 ng/mL). Data are
themean ± SEMn=5, #p≤0.05. (e). Visualisation of C3H10T1/2 cells and
their myogenic progeny on each V-cup in the LoaD platform. (f). Single
cell photon emissions from C3H/10 T1/2 in the absence or presence of

TGF-β1 (2 ng/mL) 7 d in vitro. Data are the Log2 fold increase and
represent the mean ± SEM of 55 cells/group, #p≤0.001 vs control. (g-
h). PCA loading plots and LDA of C3H/10 T1/2 cells before (blue) and
after myogenic differentiation with TGF-β1 for 7d (yellow). Data are 55
cells/group. I-J. Single cell photon emissions from C3H/10 T1/2 in the
absence or presence of TGF-β1 (2 ng/mL) 7 d in vitro compared to sham
(i) and ligated cells (j) ex vivo. Data are the Log2 fold increase and
represent the mean ± SEM of 55–178 cells/group, #p<0.001. (k-l). PCA
loading plots and LDA of sham (black), ligated (orange) and C3H/10 T1/
2 cells before (blue) and after treatment with TGF-β1 (2 ng/mL) for 7d
(yellow). (m). Confusion matrix of true class and predicted class follow-
ing a leave-one-out cross-validation procedure using the LDA classifier.
Data are from 466 cells across five wavelengths
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TGF-β1 [Fig. 4f]. Multivariate analysis revealed that undif-
ferentiated C3H/10 T1/2 cells clustered away from both their
myogenic progeny [Fig. 4f] and from Ramos B cells and
J774A.1 cells [Suppl Fig. 3a, b] and could be separated on a
cross-validatedleave-one-out basis with 99.3% accuracy.

When compared to cells isolated from sham and ligated
vessels [Fig. 4i, j], these cells clustered away from ligated
cells, but towards sham cells [Fig. 4k] and could be separated
[Fig. 4l] on a cross-validatedleave-one-out basis with 75.1%
accuracy [Fig. 4m].

When compared to aortic SMC ex vivo and Movas SMCs,
these cells clustered towards aortic SMC and Movas SMCs
[Suppl Fig. 3c, d] on a cross-validatedleave-one-out basis with
78.2% accuracy [Suppl Fig. 3g]. In addition, when compared
to MSCs and their myogenic progeny, these cells clustered
towards MSC-derived myogenic progeny [Suppl Fig. 3e, f]
on a cross-validatedleave-one-out basis with 88.5% accuracy
[Suppl Fig. 3h].

Taken together, these results suggest that single-cell pho-
tonics clearly discriminate C3H/10 T1/2 mesenchymal cells
from their myogenic progeny. Moreover, while cells isolated
from sham vessels share significant similarity with C3H/
10 T1/2-derived myogenic progeny, the photonic profile of
the majority of cells isolated from ligated vessels ex vivo were
distinct.

Lineage Tracing Analysis of Perivascular S100β+

Vascular Stem Cells in Normal and Injured Vessels

In order to determine the source of increased medial and inti-
mal cells following ligation injury, lineage tracing analysis
was performed using transgenic S100β-eGFP-CreERT2-
Rosa-26-tdTomato reporter mice [Fig. 5a]. The animals were
treated with tamoxifen (Tm) for 7 days to induce nuclear
translocation of CreER(Tm) and subsequent recombination
to indelibly mark resident S100β+ mVSc with red fluorescent
tdTomato four weeks prior to flow restriction [Fig. 5b]. Only
S100β+ mVSc cells present during the period of Tm treatment
are marked with tdT and tracked. Morphometric analysis of
the S100β-eGFP-CreERT2-Rosa-26-tdTomato mice con-
firmed significant intimal thickening in the ligated left carotid
(LCA) compared to the contralateral right carotid artery
(RCA) in transgenic mice following flow restriction for
21 days [Fig. 5c]. The tissue specificity and recombination
efficiency of the Tm-induced Cre activity was confirmed in
bone-marrow smears and neuronal tissue from S100β-eGFP-
CreERT2-Rosa-26-tdTomato mice [data not shown].

Treatment of S100β-eGFP-creER2-Rosa26tdT transgenic
mice with Tm indelibly marked S100β+ cells (S100β-tdT+)
within the adventitial layer of the LCA prior to flow restriction
[Fig. 5d]. No cells are marked when these transgenic mice
were treated with the vehicle control (corn oil) [Fig. 5d].
Importantly, no S100β-tdT+ cells were observed in the intimal

(EC) or medial (SMC) layers of vessels following tamoxifen
treatment before flow restriction [Fig. 5d]. However, follow-
ing ligation, there was a striking increase in the number of
S100β-tdT marked cells within the medial and intimal layers
of the ligated LCA, compared to RCA control [Fig. 5e].
Cumulative analysis confirmed a significant increase in the
number [Fig. 5f] and the fraction of S100β-eGFP+ cells within
the LCA medial and intimal layers, compared to the RCA
control [Fig. 5g]. Moreover, a significant proportion (~40%)
of these cells originated from an S100β-tdT marked parent
population since they were also marked with tdT [Fig. 5h].
Since intimal and medial cells are not marked with S100β-
CreER tdT prior to injury, these data suggest that a significant
proportion of intimal and medial cells are derived from a
S100β+(non-SMC) parent population following flow restric-
tion in vivo.

Single Cell Photonics of S100β+ Resident Vascular
Stem Cells and their Myogenic Progeny

Resident S100β+ mVSc were isolated from murine aorta by
sequential plating. Immunocytochemical analysis confirmed
that these cells were S100β positive [Suppl Fig. 4a]. Cnn1
protein [Fig. 6a, b], Cnn 1 mRNA expression [Fig. 6c] and
enrichment of stable SMC epigenetic H3K4me2 histone mark
at the Myh11 promoter [Fig. 6d] significantly increased after
treatment for 7 d with media supplemented with either
TGF-β1 (2 ng/mL), Jag1 (1.0 μg/mL), or SHh (0.5 μg/mL).

The photonic intensity of single cells captured on each V-
cup [Suppl Fig. 4b] at the λ565 nm wavelength following
myogenic differentiation for 14 d increased in response to all
three myogenic inducers [Fig. 6e-g]. Multivariate analysis re-
vealed that S100β+ mVSc clustered away from their respec-
tive myogenic progeny following differentiation [Fig. 6h-j]
and could be separated on a cross-validatedleave-one-out ba-
sis (TGF-β1:77.1%, Jag-1: 90% and SHh: 93.4% accuracy)
[Fig. 6k-m]. Multivariate analysis of the combined data con-
firmed S100β+ mVSc could be easily discriminated from their
myogenic progeny [Fig. 6n,o] when cross-validated on a
leave-one-out basis with 79.5% accuracy [Fig. 6p].

When compared to aortic SMC andMovas SMCs, S100β+

mVSc and their myogenic progeny clustered away from these
cells [Suppl Fig. 4c] and could be easily separated [Suppl
Fig. 4d] on a cross-validatedleave-one-out basis with 76.3%
accuracy [Suppl Fig. 4e]. Similarly, multivariate analysis con-
firmed that S100β+ mVSc and their myogenic progeny could
be discriminated from J774A.1 and Ramos B cells [Suppl
Fig. 4f-h] and MSCs and their myogenic progeny [Suppl
Fig. 5a-c], on a cross-validatedleave-one-out basis with
85.7% and 88.3% accuracy, respectively.

When compared to cells isolated from sham [Fig. 7a-c] and
ligated vessels [Fig. 7d-f], multivariate analysis of the spectra
revealed that S100β+ mVSc and their myogenic progeny
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clustered away from sham cells but towards isolated cells of
ligated vessels [Fig. 7g, h] and could be discriminated on a
cross-validatedleave-one-out basis with 73.9% accuracy [Fig.
7i-k].

We also analysed cell diameter and evaluated whether a
correlation exits between cell shape changes and autofluores-
cence (AF) emissions. The cell diameter of medial cells from
sham vessels (both carotid artery and aorta) was similar but
significantly lower compared to cells from ligated vessels
(Suppl Fig. 6). While cell diameter increased following myo-
genic differentiation in response to TGF-β1, an effect not
mirrored in Ramos B cells following similar treatment, the
changes in cell diameter were not significantly correlated with
autofluorescence emissions at λ565 nm (data not shown).

Single Cell Photonics Identifies S100β+ Resident
Vascular Stem Cells and their Myogenic Progeny
within Ligated Vessels

In order to assess the contribution of S100β+ mVSc and their
myogenic progeny to the overall heterogenous phenotype of
cells isolated from sham and ligated vessels, the photonic
profiles of (i) Movas SMCs, (ii) aortic SMCs and (iii)
S100β+ mVSc and their myogenic progeny were used as part
of a training set before sham and ligated vessel cells were
interrogated against this trained dataset using LDA. LDA of
spectra from 685 cells separated each group on a cross-
validatedleave-one-out basis with 66.7% accuracy. In sham
vessels, the majority of cells were classified as Movas SMC
[Fig. 7l]. In contrast, the majority of cells within ligated

vessels were classified as S100β+ mVSc or their myogenic
progeny (~65%) with the remainder classified as Movas SMC
[Fig. 7m]. When cells isolated from sham vessels were also
included in this training set, the majority of sham cells were
classified as SMC (either sham, Movas or aortic SMCs) [Fig.
7n]. In contrast, in ligated vessels, the majority of cells were
classified as S100β+ mVSc and their myogenic progeny on a
cross-validatedleave-one-out basis with 66.6% accuracy [Fig.
7o]. Taken together, these data suggest that a significant pro-
portion of cells within ligated/remodelled vessels share a pho-
tonic profile similar to S100β+ mVSc and their myogenic
progeny [Fig. 7p].

When the contribution of all cell types was analysed by
LDA as part of an overall training set before single cells iso-
lated from ligated vessels were interrogated, LDA of spectra
from 1063 cells separated each group on a cross-
validatedleave-one-out basis with 67.7% accuracy [Fig. 8a].
The majority of cells isolated from sham vessels were classi-
fied as themselves or Movas SMC, MSCs or their TGF-β1-
derived myogenic progeny and compromised ~86% of all
cells [Fig. 8b]. When individual cells isolated from ligated
vessels were interrogated against this trained dataset, a signif-
icant number of ligated cells were classified as S100β+ mVSc
and their TGF-β1-, Jag1- and SHh- derived myogenic proge-
ny [Fig. 8c].

These data suggest that single-cell photonic profiles
ex vivo are of sufficient coverage, specificity and overall qual-
ity for LDA algorithms to discriminate various different cell
types within injured vessels ex vivo and reveal that a signifi-
cant number of ligated cells were classified as S100β+ mVSc
and their myogenic progeny in vitro [Fig. 8d].

Supervised Machine Learning to Interrogate Isolated
Cells from Normal and Injured Vessels

As part of a supervised machine learning procedure, MLP
artificial neural network analysis was subsequently deployed
to further classify each cell population and interrogate cells
from sham and ligated vessels [26] [Fig. 9a]. To train the
network, we optimized several experimental conditions, in-
cluding number of wavelengths for input data, number of
hidden layers, the momentum and learning rate. The final
classification model had an F-score of 0.928, recall of 0.929
and precision score of 0.929 [Fig. 9b]. Cross validation con-
firmed that optimized neural networks can identify all cell
types with high performance, based only on their autofluores-
cence emissions and resulted in an F-score of 0.81. The cells
were also trained on a 66% split before the remainder was
tested and the F score dropped to 0.77. This trained data set
was subsequently used to interrogate spectral datasets of cells
isolated from sham and ligated vessels ex vivo. The majority
of sham cells (>80%) were classified as sham [Fig. 9c]. In
contrast, ~50% of ligated cells were classified as mVSc and

�Fig. 5 Lineage tracing analysis of marked perivascular S100β cells
following flow restriction. (a). Schematic diagram showing genetic
lineage tracing using S100β-CreERT2-Rosa26-tdTomato. (b).
Schematic diagram showing protocol for Tm injections before ligation
after 4 week Tm washout. (c). Morphometric analysis of adventitial,
medial, intimal and luminal volumes in male and female S100β-
CreERT2-Rosa26-tdTomato mice following complete ligation of the left
carotid artery (LCA) for 21 d. Data are from 4 animals per experimental
group. (d). Representative confocal fluorescence images of DAPI nuclei
(blue) and S100β-tdT+ (red) cells in sham and ligated LCA in corn oil
(control) treated animals. Representative images shown; 4 animals per
experimental group. Scale bar = 50 μm. (e). Representative confocal
fluorescence images of DAPI nuclei (blue), S100β-tdT+ (red) cells
S100β-eGFP+ cells in sham and ligated LCA in tamoxifen (Tm) treated
animals. Representative images are from 4 animals per experimental
group. Scale bar = 50 μm. (f). Cumulative analysis of the number of
DAPI nuclei/hpf in the adventitial, medial and intimal layers from the
contralateral RCA and ligated LCA. Data are the mean ± SEM of 10–20
images/group, #p≤0.05. (g). Cumulative analysis of the fraction of
S100β-eGFP+ cells within the adventitia (A), media (M), and neointima
(NI) of RCA and ligated LCA. Data are the mean ± SEM of 15–20
sections per experimental group, #p≤ 0.05 from 4 animals per group. H.
Cumulative analysis of the fraction of S100β-tdT+ cells within the ad-
ventitia (A), media (M), and neointima (NI) of RCA and ligated LCA.
Data are the mean ± SEM of 15–20 sections per experimental group, #p≤
0.05 from 4 animals per group
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their SHh-derived myogenic progeny in addition to sham cells
(~19%) and non-classified ligated cells [Fig. 9d, e].

As undifferentiated cells can switch between mitochondrial
respiration and aerobic glycolysis (even in the presence of
oxygen) akin to the “Warburg effect” whereby cells increase
their lactate output to fuel their ever-increasing metabolic de-
mands, we determined the metabolic state of undifferentiated
stem cells before and after treatment with a myogenic stimulus
in vitro. The levels of glucose and glutamine consumption in
addition to lactate release relative to protein content were all
evaluated in mVSc conditioned media before and after myo-
genic differentiation with the Notch ligand, Jag-1. Myogenic
differentiation was associated with a significant increase in
glucose consumption and enhanced lactate release over time
when compared to undifferentiated cells up to day 14. In con-
trast, glutamine consumption was similar until day 14 (Suppl
Fig. 7a-c). This was specific for myogenic differentiation as
inhibition of Jag-1 induced Notch signalling with DAPT
inhibited these glycolytic responses (Suppl Fig. 7d-f).

Our new network was then re-trained to include the level of
glycolytic metabolism, SMC differentiation marker gene and
Col 3A1 expression as additional variables to the photonic
autofluorescence emissions of cells as a predictor of pheno-
type within lesions. To re-train the network, we again

optimized several all experimental conditions. The number
of hidden layers was optimised at 1 and the final re-trained
classification model had an improved F-score of 0.997, recall
of 0.997 and precision score of 0.987. Cross validation con-
firmed that the optimized neural network can identify all cell
types with high performance, based on their autofluorescence
emissions, SMC differentiation gene expression, Col 3A1
levels and glycolytic metabolism and resulted in an F-score
of 0.975. The cells were also trained on a 66% split before the
remainder was tested and the F-score was improved at 0.981
(Fig. 9f-g). This re-trained data set was subsequently used to
interrogate single cells isolated from ligated vessels ex vivo.
Again, the majority of cells from ligated vessels were classi-
fied as mVSc and their SHh-derived myogenic progeny (Fig.
9h, i).

Thus, supervised machine learning using MLPs neural net-
work analysis successfully identified each cell type in both
training sets with a high degree of accuracy (>90%) and fur-
ther confirmed lineage tracing analysis that a significant num-
ber of ligated cells ex vivo are classified as S100β+ mVSc and
their myogenic progeny in vitro [Fig. 9e, i].

Elastin and Coll 3A1 Contribute to the Photonic
Intensity of Stem Cell-Derived Myogenic Progeny at
λ565 ± 20 Nm Wavelength

PCA loading plots of cells isolated from sham and ligated
vessels suggest that the photonic differences at λ565 ±
20 nm had a significant influence on PC1 [Fig. 1i].
Similarly, the photonic profile at λ565 ± 20 nm had a signif-
icant influence on PC1 in PCA biplots of single MSCs,
S100β+ mVSc and C3H/10 T1/2 cells following myogenic
differentiation in vitro when compared [Fig. 10a]. When the
photonics of single cells isolated from sham and ligated ves-
sels was compared toMSCs, S100β+ mVSc and C3H/10 T1/2
cells at λ565 ± 20 nm, there was a marked increase in the
intensity at this wavelength in cells isolated from ligated ves-
sels and cells undergoing myogenic differentiation [Fig. 10b].
In order to identify one of the fluorophores that may contribute
to the increase in the photonic intensity of stem cell-derived
myogenic progeny at λ565 ± 20 nm, the roles of two impor-
tant auto fluorescent molecules, elastin and Coll3A1 were
assessed [27]. The mRNA levels of elastin and Coll3A1 were
both significantly increased following myogenic differentia-
tion of mMSCs with TGF-β1 treatment [Fig. 10c] and
S100β+ mVSc with TGF-β1 [Fig. 10d] and Jag1 [Fig. 10e].
The effects of elastin and Coll3A1 depletion on the photonic
profile of undifferentiated mMSCs at the λ565 ± 20 nmwave-
length was also assessed following transfection of cells with
specific siRNA duplexes targeting elastin and Coll3A1 tran-
scripts, respectively. A fluorescently tagged siRNA was used
to validate transfection efficiency at over 80% [data not
shown] before elastin and Coll3A1 mRNA depletion

�Fig. 6 Single cell photonics of S100β+ vascular stem cells (mVSc) be-
fore and after myogenic differentiation in vitro. (a). Representative im-
munocytochemical analysis of Cnn1 (green) and DAPI nuclei staining
(blue) in mVSc before and after treatment of cells with media supple-
mented with TGF-β1 (2 ng/mL), Jag1 (1 μg/mL) and SHh (0.5 μg/mL)
for 14d. (b). The fraction of Cnn1+ cells before and after treatment of cells
with media supplemented with TGF-β1 (2 ng/mL), Jag1 (1 μg/mL) and
SHh (0.5 μg/mL) for 14d. Data are the mean ± SEM of 3 experiments,
#p≤0.05 vs control. (c). Log2 fold change in Cnn1 mRNA levels before
and after treatment of cells with media supplemented with TGF-β1 (2 ng/
mL), Jag1 (1 μg/mL) and SHh (0.5 μg/mL) for 7d. Data are the mean ±
SEM n=3, #p≤0.05 vs control. (d). Fold enrichment of the stable SMC
histone modification, H3K4me2 and repressive histone modification,
H3K27me3 at the Myh11 promoter in fresh mouse aorta (Aorta), mouse
embryonic stem cells (ESC), and undifferentiated S100β+ mVSc before
(mVSc) and after treatment of cells with media supplemented with TGF-
β1 (2 ng/mL), Jag1 (1 μg/mL) and SHh (0.5 μg/mL) for 7 d. Data are
representative of n=3, #p<0.05 vs control. (e-g). Single cell auto-
fluorescence photon emissions from mVSc in the absence or presence
TGF-β1 (2 ng/mL), Jag1 (1 μg/mL) and SHh (0.5 μg/mL) for 14 d
in vitro. Data are the Log2 fold increase and represent the mean ± SEM
of 55 cells/group, #p≤0.001 vs control. (h-j). Individual PCA loading
plots of mVSc before (blue) and after myogenic differentiation with (h)
TGF-β1 (green), (i) Jag1 (yellow) and (j) SHh (red). (k-m). Individual
LDA plots of mVSc before and after myogenic differentiation with (k)
TGF-β1, (l) Jag1 and (m) SHh. (n). Cumulative PCA loading plots of
mVSc before (blue) and after myogenic differentiation with (h) TGF-β1
(green), (i) Jag1 (yellow) and (j) SHh (red). (o). Cumulative LDA plots of
mVSc before and after myogenic differentiation with (k) TGF-β1, (l)
Jag1 and (m) SHh. (p). Confusion matrix of true class and predicted class
following a leave-one-out cross-validation procedure by the LDA classi-
fier. Data are from 219 cells across five wavelengths
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following TGF-β1 treatment was confirmed by qRT-PCR af-
ter 72 h [Fig. 10f].

In order to establish whether collagens might contribute to
the photonic intensity of myogenic progeny at λ565 ± 20 nm,
we performed spectral analysis using the LoaD platform on
various forms of recombinant collagen (Col I⍺1, Col I⍺2 and
Col 3A1) as these collagens are synonymous with vascular
tissue [28]. In particular, Col I and 3A1 are enhanced in
SMCs in culture and within vascular lesions [29, 30]. While
autofluorescence emissions were detected for all collagens ex-
amined, the predominant autofluorescence emissions at λ560 ±
20 nm were detected for Col 3A1 (Suppl Fig. 8a). To further
address these collagen spectra more efficiently, spectra across
various excitatory wavelengths (λ400–700 nm) were analysed
following removal of background emissions due to PBS. Peak
Col 3A1 autofluorescence emissions were predominantly ob-
served between λ400 - λ480 nm and λ510 - λ570 nm using
λ358 and λ 488 nm excitation, respectively (Suppl Fig. 8b-f).
When Col 3A1 was excited at various wavelengths (λ300–
500 nm), clear emission spectra were observed between at
λ465, λ530 and λ565 nm (Suppl Fig. 8g-i). Notably, the pho-
tonic intensity of undifferentiated cells at λ565 ± 20 nm follow-
ing Coll3A1 depletion was significantly decreased without a
significant effect following elastin depletion, when compared
to the scrambled siRNA controls [Fig. 10g]. However, the pho-
tonic intensity at λ565 ± 20 nm was significantly reduced fol-
lowing treatment with TGF-β1 for 7 d in both elastin and
Coll3A1 depleted mMSCs [Fig. 10g].

These data confirm that the autofluorescence emissions at
λ565 ± 20 nm during myogenic differentiation of

undifferentiated stem cells was due, in part, to changes in
elastin an Coll3A1 expression within these cells.

Discussion

The application of single cell autofluorescence to study vas-
cular physiology and pathology is an exciting emerging field
[31, 32]. The ability to easily discriminate heterogeneous pop-
ulations of cells in the context of various disease processes is
of potential clinical and diagnostic value. Herein, we demon-
strate the feasibility of multivariate analysis of single cell pho-
tonics as a powerful discriminator of cell phenotype using
optical multi-parameter interrogation of single cells on a novel
Lab-on-a-Disk(LoaD) platform. Single cell photonics were of
sufficient coverage, specificity, and quality to discriminate
various disparate cell phenotypes in vitro and normal medial
SMCs from SMC-like cells following injury ex vivo, in addi-
tion to distinguishing myogenic differentiation of a series of
multipotent stem cells in vitro. Using these photonic datasets,
cellular heterogeneity within vascular lesions was confirmed
by identifying the presence of S100β+stem-derived myogenic
progeny using multivariate analysis and supervised machine
learning and validated by genetic lineage tracing in vivo. A
combination with indices of cell metabolism, lineage specific
gene expression and structural gene expression further en-
hanced the AI model in predicting the cellular heterogeneity
within vascular lesions.

In this study, we clearly demonstrate the feasibility of mea-
suring specific autofluorescence emissions from single cells to
discriminate several cell phenotypes ex vivo or in vitro. In
particular, differentiatedmedial SMCs displayed significant dif-
ferences in their photonic profile across five broadband light
wavelengths when compared to SMC-like cells from injured
vessels, SMCs in culture, undifferentiated stem cells, macro-
phages and B-cells. Notably, significant differences were ob-
served in medial SMCs from normal aortic and carotid vessels.
Based on these data, it is clear that considerable heterogeneity
exists in the photonic profile of medial SMCs between vascular
beds in healthy animals, and yet medial SMCs uniformly ex-
press SMC contractile markers (SMA and Myh11). This het-
erogeneity is noteworthy as it may indicate the existence of
specific subsets of medial SMCs with particular disease-
relevant photonic profiles. Similar conclusions were observed
using scRNA-seq data as a discriminator [33]. As carotid artery
SMCs are atheroprone and are derived from the neural crest
[34] whereas medial SMCs derived from the thoracic aortic
are of somatic mesoderm origin [35] and are considered
athero-resistant, it is likely that differences in their embryolog-
ical origin may contribute to these distinct photonic profiles.

Bone-marrow derived MSCs and C3H/10 T1/2 cells are
considered good models of SMC differentiation from meso-
derm precursors in vitro [36, 37] and single cell

�Fig. 7 Single cell photonics identifies S100β resident vascular stem cells
and their myogenic progeny within ligated vessels. (a-c). Single cell
photon emissions from Sham cells ex vivo compared to mVSc in the
presence (a) TGF-β1 (2 ng/mL), (b) Jag1 (1 μg/mL) and (c) SHh
(0.5 μg/mL) for 14 d in vitro. Data are the Log2 fold increase and repre-
sent the mean ± SEM of 55–178 cells/group, #p≤0.001 vs control. (d-f).
Single cell auto-fluorescence photon emissions from ligated cells ex vivo
compared to mVSc in the presence (d) TGF-β1 (2 ng/mL), (e) Jag1
(1 μg/mL) and (f) SHh (0.5 μg/mL) for 14 d in vitro. Data are the Log2
fold increase and represent the mean ± SEM of 55–178 cells/group,
#p≤0.001 vs control. (g-h). Cumulative PCA loading plots and LDA of
sham (black), ligated (orange) and mVSc before (blue) and after myogen-
ic differentiation with (h) TGF-β1 (green), (i) Jag1 (yellow) and (j) SHh
(red). I. Confusion matrix of true class and predicted class following a
leave-one-out cross-validation procedure by the LDA classifier. Data are
from 575 cells across five wavelengths. (j-k). Percentage of cells in sham
and ligated vessels predicted as mVSc and their myogenic progeny by
LDA classifier. Data are from 575 cells across five wavelengths (l-m).
Percentage of cells in sham and ligated vessels classified as aortic SMCs,
Movas SMCs and mVSc and their myogenic progeny when trained with
datasets by LDA classifier. Data are from 356 cells. (n-o). Percentage of
cells in sham and ligated vessels classified as sham cells, aortic SMCs,
Movas SMCs and mVSc and their myogenic progeny by the LDA clas-
sifier. Data are from 356 cells across five wavelengths. (p). Graphic
representation of percentage of cells in sham and ligated vessels by
LDA classifier
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autofluorescence emissions clearly discriminated undifferen-
tiated stem cells from their myogenic progeny. These differ-
ences were also apparent when myogenic progeny were inter-
rogated by Raman and Fourier Transform Infrared (FTIR)
spectroscopy as a discriminator where they shared a similar
photonic profile with ‘de-differentiated’ sub-cultured vascular
SMCs in vitro [38]. It is also not surprising that MSC- and
C3H/10 T1/2-derived myogenic progeny shared similar pho-
tonic characteristics to aortic SMCs ex vivo and cultured
Movas SMCs since they are derived from the same mesoderm
origin. As resident S100β mVSc are neuroectoderm in origin

and express neural stem cell markers such as S100β, Nestin,
Sox10 and Sox17 [39–41], these cells and their myogenic
progeny were distinct to aortic SMCs based on their photonic
profile. Furthermore, it is unlikely these resident stem cells are
derived frommedial SMCs as they did not enrich for the stable
SMC epigenetic histone mark, H3K4me2 at the Myh11 locus
[23]. However, these myogenic progeny were most notable
for their photonic similarity to cells of ligated remodelled
vessels.

For many years, SMC-like cells within neointimal lesions
have been considered monoclonal/ oligoclonal in origin

Fig. 8 Single cell photonics of all
cells identifies S100β resident
vascular stem cells and their
myogenic progeny within ligated
vessels using an LDA classifier.
(a). Confusionmatrix of true class
and predicted class of all cells
following a leave-one-out cross-
validation procedure by the LDA
classifier. The LDA algorithm
was trained using single cell pho-
tonic analysis from (i) sham cells,
(ii) aortic SMCs, (iii) Movas
SMCs, (iv) J774A.1 macro-
phages, (v) Ramos B cells, (vi)
MSCs and their myogenic proge-
ny, (vii) S100β mVSc and their
myogenic progeny. Data are from
885 cells (b). Percentage of cells
in sham vessels using the LDA
classifier when trained with all
cells. Data are from 178 cells. (c).
Percentage of cells in ligated ves-
sels using the LDA classifier
when trained with all cells. Data
are from 178 cells (d). Graphic
representation of percentage of
cells in sham and ligated vessels
when trained with all cells using
the LDA classifier
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arising from the expansion of a pre-existing resident clonal
population of cells. Despite extensive research, their origin
remains controversial. Although the Myh11-CreERT2 trans-
gene was originally deemed specific for vascular SMC cell
fate mapping studies [42], data indicating expression of this
and other SMC differentiation genes in non-SMC populations
has recently emerged [43–45] raising the possibility that other
resident cells may contribute to lesion formation. In this study,
we provide compelling genetic evidence using lineage tracing
analysis that vascular lesions contain an abundance of S100β+

cells that originate from a non-SMC perivascular S100β+ par-
ent population in support of other studies demonstrating a
stem cell origin for lesional cells [46–48]. When the photonic
profile of a range of cells in vitro and ex vivowere used as part
of a training set by LDA, a substantial proportion of cells
within lesions were classified as S100β+ vSCs and their
SHh-derived myogenic progeny. The latter is not surprising
as several previous studies support a role for Hh signalling in
vascular lesion formation [19, 21, 22] where adventitial Sca1+

stem cells co-localise with SHh and its receptor, Ptch1 [49].
Multi-layered neural networks that mimic a human neural

circuit structure have become increasingly popular in finding
latent data structures and classifying highly nonlinear photon-
ic datasets [13]. They have also proven ideal for classifying
cell subtypes from label-free images [50] to predict macro-
phage activation [51], lymphocyte cell types [52], pluripotent
stem cell-derived endothelial cells [53], and differentiating
primary hematopoietic progenitors [54]. Our analysis using a
pre-trained MLP neural network clearly facilitated classifica-
tion of cells from normal and injured vessels with autofluo-
rescence emissions as the only input. Similarly, undifferenti-
ated stem cells were easily discriminated from their myogenic
progeny with the same trained photonic dataset. Using this
MLP artificial neural network, we successfully classified
sham and ligated cells ex vivo and further predicted the pres-
ence of S100β+ mVSc and their myogenic progeny within
injured vessels confirming our S100β lineage tracing analysis
and supporting previous studies that mapped stem cell-derived
myogenic progeny to vascular lesions [46–48]. Our success in
classifying these cells without exogenous contrast agents sug-
gests that modern machine learning approaches may help
compensate for spectral data with less molecular specificity
and may provide further insight into the function and regula-
tion of stem cells and their progeny in disease. Further en-
hancement of the AI model was facilitated when spectral sig-
natures were combined with indices of cell metabolism, line-
age specific gene expression and structural gene expression to
predict the cellular heterogeneity within vascular lesions.
Beyond the immediate findings of our study, these single-
cell photonic profiles generated from healthy and injured ves-
sels may also enable further examination of vascular cell het-
erogeneity and function in disease.

Mammalian cells are known to contain molecules which
become fluorescent when excited by UV/Vis radiation of suit-
able wavelength arising from endogenous fluorophores [27].
There are many endogenous fluorescence sources of contrast
but the most robust and widely reported have been those as-
sociated with metabolism and structural architecture [55].
These signatures offer the greatest impact when deployed in
combination with clinical assessment of normal, altered or
diseased states and act as powerful intrinsic “optical antennas”
of the morphological and functional properties of cells. [27,
56, 57]. In stem cells, the autofluorescence signal is strongly
dominated by cellular autofluorescence, for which NAD(P)H
and FAD are the major contributors [56, 58], while other
fluorophores such as collagens and elastin are dominant in
vascular tissue [59]. The relative proportions of these
fluorophores may change in disease and reflect the energetic
and structural health of the vascular cells. While structural
alterations are relatively straightforward to detect, due to the
high quantum yield of collagen and elastin and their long
fluorescence lifetime, metabolic alterations are more challeng-
ing to interpret due to the multitude of metabolic pathways
and fluorophore species involved [31]. Vascular cells produce
elastin as part of their reaction to increased mechanical stress
associated with arteriosclerotic disease progression [60, 61]
and it is significantly increased following carotid artery injury
[28] and TGF-β1 stimulation [62]. Since specific knockdown
of elastin caused a significant decrease in the photonic inten-
sity of stem cells following myogenic differentiation, it is
likely that changes in elastin content within ligated vessels
due to the accumulation of stem cell-derived progeny may
contribute to the enhanced emissions at this wavelength. In a
similar manner, photonic emissions from collagens are gener-
ally associated with hydroxylysyl-pyridinoline and lysyl-
pyridinoline groups that are affected by age-dependent poly-
merization of monomeric chains and cross links [63]. In the
normal arterial wall, collagen type I and Coll 3A1 are the main
collagens in the media and adventitia while arterial injury
alters the balance between TGF-β1 and these two types of
collagen [64–66]. The deposition of Coll 3 has also been re-
cently identified in neointimal SMC-like cells in a rat carotid
model using 18F-fluorodeoxyglucose (FDG positron emis-
sion tomography - PET) [67]. Our study demonstrates that
undifferentiated stem cells undergoing myogenic differentia-
tion increase their collagen production concomitant with an
increased photonic intensity at λ565nm. Since Col 3A1 emis-
sion spectra are observed at λ565 nm and Coll 3A1 depletion
reduced this photonic intensity, it is likely that changes in
collagen content within cells of ligated vessels due to the
accumulation of stem cell-derived progeny may also contrib-
ute to the enhanced emissions at this wavelength.

Independent of structural changes, there is also recent evi-
dence linking cell metabolism to transcriptional activity dur-
ing differentiation/de-differentiation cycles that may
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contribute to changes in the photonic profile of these cells
[68]. Indeed, it is known that glucose catabolism due to cellu-
lar differentiation increases relative to oxidative phosphoryla-
tion during periods of biosynthesis with significant carbon
demands [69] . In fully differentiated cells, such as medial
SMCs, efficient ATP production is valuable, and accordingly,
these cells primarily rely on oxidative phosphorylation, pro-
ducing a high baseline optical redox ratio of FAD/
[NAD(P)H+FAD] [70]. While we clearly demonstrate upreg-
ulation of glycolytic metabolism in cells upon myogenic stim-
ulation (even in the presence of oxygen) akin to the “Warburg
effect”, the precise species involved were not specifically ad-
dressed in the current manuscript. NADPH is routinely uti-
lized in the maintenance of pools of glutathione, thioredoxin,
and peroxiredoxins, which help to create a reductive environ-
ment after oxidative damage produced by processes such as
inflammation or ischemia, typical of vascular injury [71].
Quantifying NAD(P)H and FAD fluorescence through an op-
tical redox ratio and fluorescence lifetime imaging (FLIM) can
provide sensitivity to the relative balance between oxidative
phosphorylation and glucose catabolism. As peak single-
photon NADH and NADPH fluorescence emissions are nor-
mally observed between λ440 and λ470 nm using λ330–360
nm excitation and FAD fluorescence is normally emitted at a
peak of 520–530 nm when excited between 365 and 465 nm
[58], it is unlikely that the changes at λ565 nm in cells from
ligated vessels and S100β derived myogenic progeny are due
to NAD(P)H emissions.

Importantly, programming and lineage-specific differenti-
ation of vascular progenitors is associated with a metabolic

phenotype [69, 72, 73]. Recent studies support such a concept
since mitochondrial protein Poldip2 (Polymerase Delta
Interacting Protein 2) controls SMC differentiation through a
mechanism that involves regulation of metabolism [74].
Poldip2 deficiency reduces the activity of the Krebs cycle
and inhibits rates of oxidative metabolism while increasing
rates of glycolytic activity in many different cell types, includ-
ing vascular SMCs [68]. While heterozygous Poldip2 de-
letion has no obvious phenotype, it is notable that mice
are protected against neointimal formation following in-
jury [75] underlying the importance of metabolism in
disease progression. Therefore, it is possible that the
changes in the photonic profile from ligated cells may
also involve alterations in the metabolic state of these
cells, in particular, if these cells are mVSc cell-derived
myogenic progeny. While challenging to interpret, fu-
ture studies will attempt to illuminate the potential con-
tribution of individual key fluorophores involved in cell
metabolism in single cells ex vivo during disease
progression.

One important limitation of this study is the lack of an
extensive library of spectral signatures or the use of nonlinear
unmixing and other spectral analysis methods (which utilise
similarity or spectral distance metrics) to estimate the abun-
dances of autofluorescence molecules. Ideally, every source
of fluorescence would be identified and its abundance quan-
tified. While the impact of two types of fluorescent molecule
known to be upregulated in vascular lesions [28, 67] was
addressed, previous fluorescence imaging studies have shown
significant spectral differences among the various types of
collagens during fibrosis [9]. We clearly demonstrate that
when recombinant Col 3A1 is excited at various wavelengths
(λ300–500 nm), a clear emission spectra is present at λ465,
λ530 and λ565 nm. It is therefore likely that the observed
changes at λ565 nm in single cells from ligated vessels
ex vivo and S100β derived myogenic progeny in vitro are
due in part to increased Col 3A1 levels in these cells, in par-
ticular, since Col 3A1 depletion reduced the autofluorescence
emissions at λ565 nm. Future work will address a wider range
of autofluorescence molecules, including other types of colla-
gen, lipofuscin and the contribution of NAD(P)H and FAD
amongst others [31]. Nevertheless, it is clear that endogenous
fluorophores acting as intrinsic biomarkers offer an exception-
ally powerful tool to characterize subtle changes of intercon-
nected morphological and metabolic properties of cells and
tissues under physiological or pathological conditions.

In conclusion, we have demonstrated the feasibility of sin-
gle cell photonics to facilitate the detection of disease-relevant
photonic signatures that reflect cell type and differentiation
state. These signatures may have important predictive value
for vascular disease and expand our current understanding of
vascular pathology as they represent an important discrimina-
tor for classifying vascular phenotypes in subclinical

�Fig. 9 Supervised machine learning identifies S100β+ mVSc-derived
myogenic progeny within ligated vessels. (a). Graphic representation of
the MLP neural network algorithm. (b). Confusion matrix of true class
and predicted class of following training with (i) sham cells, (ii) ligated
cells (iii) aortic SMCs, (iv) Movas SMCs, (v) J774A.1 macrophages, (vi)
MSCs and their myogenic progeny and (vii) S100β mVSc and their
myogenic progeny using MLP neural network analysis. (c-d).
Percentage of cells in sham and ligated vessels classified using MLP
neural network analysis on trained dataset. The trained dataset consisted
of 924 cells across five wavelengths. The test dataset consisted of 78 cells
across five wavelengths (e). Graphic representation of percentage of cells
in sham and ligated vessels using MLP neural network analysis. (f).
Graphic representation of the MLP neural network algorithm combining
photonic signatures with indices of cell metabolism, lineage specific gene
expression and structural gene expression to predict the cellular hetero-
geneity within vascular lesions. (g). Confusion matrix of true class and
predicted class of following training with (i) sham cells, (ii) ligated cells
(iii) aortic SMCs, (iv) Movas SMCs, (v) J774A.1 macrophages, (vi)
MSCs and their myogenic progeny and (vii) S100β mVSc and their
myogenic progeny using re-trained dMLP neural network analysis. (h).
Percentage of cells in ligated vessels classified usingMLP neural network
analysis on re-trained dataset. The trained dataset consisted of 924 cells
across five wavelengths. The test dataset consisted of 78 cells across five
wavelengths (i). Graphic representation of percentage of cells in ligated
vessels using MLP neural network analysis
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atherosclerosis. As S100β+ mVSc and their myogenic proge-
ny display a distinct photonic signature, this may facilitate
early detection in situ. This approach is clinically feasible as
the data are based on broadband light detection that can be
implemented with state-of-the-art diagnostics using in situ en-
doscopic analysis [32] or integrated ultrasound and

multispectral fluorescence lifetime catheters [76]. Our study
supports implementation of a multifactorial approach in early
vascular lesion detection where imaging and photonic signa-
tures are combined to assess lesion progression thereby en-
abling more information about the disease before final
treatment-decisions are made. Combining vascular phenotype

Fig. 10 Elastin and Coll 3A1 contribute to the photonic intensity of stem
cell-derived myogenic progeny at λ565 ± 20 nm wavelength. (a). PCA
biplots of single cell photon analysis fromMSC,mVSc and C3H/10 T1/2
cells in the absence or presence of TGF-β1. Each λ variable in the PCA
biplot is representative of the eigenvectors (loadings). The λ565 variable
strongly influences PC1 when cells undergo myogenic differentiation.
(b). Log2 fold changes in single cell photon emissions at λ565 nm in
sham and ligated cells ex vivo, MSC and mVSc following myogenic
differentiation. Data are the mean ± SEM of 55–178 cells/group,
#p≤0.01. (c). Log2 fold changes in mRNA levels for elastin and
Coll3A1 in MSCs following treatment with TGF-β1 for 7 d. Data are
the mean ± SEM of n= 3, #p≤0.05 vs control. (d). Log2 fold changes in

mRNA levels for elastin and Coll 3A1 in mVSc following treatment with
TGF-β1 for 7 d. Data are themean ± SEMof n= 3, #p≤0.05 vs control (e).
Log2 fold changes in mRNA levels for elastin and Coll 3A1 in mVSc
following treatment with Jag1 for 7 d. Data are the mean ± SEM of n= 3,
#p≤0.05 vs Fc control. (f). Log2 fold changes in mRNA levels for elastin
and Coll3A1 in response to TGF-β1 (2 ng/mL) following siRNA knock-
down of elastin and Coll3A1, respectively. Data are the mean ± SEM of
n= 3, #p≤0.05 vs scrambled control. (g). Log2 fold changes in single cell
photon emissions at λ565 nm in response to TGF-β1 (2 ng/mL) following
siRNA knockdown of elastin and Coll3A1, respectively. Data are the
mean ± SEM of n= 3, #p≤0.05 vs scrambled control
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information from photonic profiles with imaging may also be
useful for other fibrotic diseases.

Methods

Biochip Device The biochip design was based on cell sedi-
mentation under stagnant flow conditions due to the appli-
cation of centrifugal force into an array of V-shaped cap-
turing elements (Fig. 1e). The base (microfluidic inlets and
V-cup array) section of the biochip was fabricated in
PDMS (Sylgard 184, Dow Corning GmbH, Germany).
Moulds for PDMS casting were surface micro-machined
using SU8–3025 (Microchem, USA) for manufacturing
the V-cup array and the reservoirs. The biochip middle
layer (chip support holder) was manufactured using
poly(methyl methacrylate) (PMMA) with a thin layer of
pressure sensitive adhesive (PSA) attached to its base. A
laser cutter (Epilog Zing Laser, Epilog, USA) defined the
middle layer of the biochip. The chip substrate consisted of
a standard borosilicate microscope slide which was bonded
to the chip middle layer using PSA. This hybrid chip was
then treated by air plasma (1000 mTorr) for 5 min and
assembled with the PDMS base to complete the biochip
[77] The fabrication method for the biochip ensured trans-
parency and biocompatibility and was leak free and facil-
itated long term stability. The operating principles of the
V-cup array have been described previously [11]. Briefly,
the sedimentation takes place with the liquid bulk at rest to
provide high capture efficiency. V-cups (13 μm diameter)
staggered in an array of 47 × 24 cups which can thus trap
up to 1128 individual cells. Additional trap and pillar
based locations are also on the biochip to facilitate a sub-
population of cells to be selected (via optical tweezers) and
further single cell assays. Finally, a disc for holding three
biochips and for mounting onto the centrifugal test stand
was manufactured using 3D printing. The centrifugal test
setup comprised a motor for spinning the microfluidic
ch ips (4490H024B, Fau lhaber mic romotor SA,
Switzerland), a synchronized camera for image acquisition
during rotation (TXG14c, Baumer AG, Germany) coupled
to a motorized 12x zoom lens (Navitar, USA) and a strobe
light unit (Drelloscop 3244, Drello, Germany) as described
previously [78]. The system integration between the
microfluidic and optical systems for SCA was performed
using an in-built optical detection and imaging system on
the centrifugal test stand. The optical module incorporated
a laser tweezers to manipulate individual cells on disc
us ing a 1-W, 1064-nm infrared laser (Roi thner
Lasertechnik, Austria). This laser was focused through a
40x oil immersion microscope objective (CZ Plan Neofluar
40x/1.3 OIL PH3, Zeiss, Germany) with a numerical aper-
ture (NA) of 1.3. This setup allowed a working distance of

200 μm. This objective was mounted on a piezo driven Z-
drive with a travel range of 100 μm (Fast PIFOC® Piezo
Nanofocusing Z-Drive, PI, Germany) for fine focusing.
Additionally, the module included a high sensitivity cooled
CCD camera (Sensicam qe, PCO, Germany) which utilizes
the same optical path as the laser to facilitate particle han-
dling and acquisition of bright-field and fluorescent im-
ages. Excitation was performed by a 250-W halogen lamp
(KL 2500 LCD, Schott, Germany) with an enclosed filter
wheel to allow both broadband light (λ = 360–800 nm) and
selected fluorescent excitation (filtered at excitation wave-
lengths of 403 ± 32 nm, 492 ± 15 nm, 515 ± 25 nm, 572 ±
15 nm and 610 ± 32 nm) and emission wavelengths (emis-
sion filters are 465 ± 20 nm, 530 ± 20 nm, λ565 ± 20 nm
and 630 ± 20 nm and 670 ± 20 nm). The module was
mounted on a computer controlled X-Y stage (Qioptiq,
Germany). Measurement of background photons assessed
the contribution of the chip PDMS material and the sur-
rounding liquid (cell media), on a fully primed empty chip.
The images are acquired post capture when the cells settle
into the capture V-cup region. The method of travel
through the chip was sedimentation based and did not im-
pact on the fluorescence emissions as the cells experience
minimum shear force as they travel through the chip. Spin
speed for the cells travelling through the chip is fixed at
10 Hz for all experiments to reduce any instrumentation
variations. Excitation (lamp power etc.) and image acqui-
sition settings (exposure time, min and max values etc.)
were fixed and uniform across all experiments. The effect
of the width of the excitation (15–32 nm) using commer-
cial filters fitted into the imaging system revealed that
changing an excitation filter bandwidth by a small incre-
ments had little impact on fluorescence excitation. In all
studies, the entire cell was selected as the region of interest
(ROI) and the mean value across the entire cell is present-
ed. The experimental volume fraction of the cell probed
and the standard deviation across each cell, in each wave-
length, was low (data not shown).

Biochip Preparation and Microfluidic Testing The device was
placed in vacuum prior to introducing the liquids for a
minimum of 30 min ensure complete and bubble-free fill-
ing. The biochip was primed with the appropriate cell cul-
ture media formulation for the cell type under test via the
loading chamber on the top right section of the biochip.
After priming, cells were introduced via the loading cham-
ber on the top left section of the biochip. All pumping was
performed the centrifugal test stand and a 3D-printed chip
holder which allows three biochips to be tested in parallel,
thus significantly increasing the cell capture efficiency of
the V-cup array system compared to common, flow-driven
systems [78]. Initial cell capture tests were performed
using 20-μm polystyrene beads to emulate cell behaviour
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before being repeated using cells. In all cases, the sedimen-
tation in absence of flow led to significantly increased oc-
cupancy of the V-cups (≥ 95%) compared to common,
flow-driven methods (data not shown).

Tamoxifen-Induced Genetic Lineage Tracing

S100β-CreER-Rosa26tdT mice (average weight 20 g, 6–8
wks old) were injected IP with tamoxifen (Tm) dissolved in
corn oil at 75 mg/kg for 5 consecutive days. Carotid artery
ligation (partial, or complete), or sham operation, was per-
formed at 4 weeks after the last injection of Tm. At the indi-
cated time post-ligation or sham operation, anesthetized mice
were perfusion fixed and carotid arteries harvested for
analysis.

Histomorphometry

At specified times post-ligation, mice were anesthetized (ke-
tamine/xylazine) and perfusion fixed with 4% paraformalde-
hyde in sodium phosphate buffer (pH 7.0). Fixed carotids
were embedded in paraffin for sectioning. Starting at the ca-
rotid bifurcation landmark (single lumen) a series of cross-
sections (10 × 5 μm) were made, every 200 μm through
2 mm length of carotid artery. Cross-sections were de-
paraffinized, rehydrated in graded alcohols and stained with
Verhoeff-Van Gieson stain for elastic laminae and imaged
using a Nikon TE300 microscope equipped with a Spot RT
digital camera (Diagnostic Instruments). Digitized images
were analyzed using SPOT Advanced imaging software.
Assuming a circular structure in vivo, the circumference of
the lumen was used to calculate the lumen area, the intimal
area was defined by the luminal surface and internal elastic
lamina (IEL), the medial area was defined by the IEL and
external elastic lamina (EEL), and the adventitial area was
the area between the EEL and the outer edge, essentially as
described by us previously [22].

Haematoxylin and Eosin Staining of Tissue

For murine vessels, paraffin rehydration was conducted at
room temperature by immersing the slides in xylene for
20 min. The slides were then immersed in the following gra-
dients of ethanol for 5 min respectively: 100%, 90%, 70% and
50% ethanol. The slides were then rinsed in distilled H2O2

before washing in 1x PBS for 10 min. The slides were stored
in 1x PBS until ready when they were immersed in Harris
Haematoxylin at room temperature for 8 min.

Immunofluorescent Staining of Tissues

Immunostaining essentially as previously described [22].
Carotid artery cryosections were air-dried for 1 h at room
temperature, followed by incubation with blocking buffer
(5% donkey serum, 0.1% Triton X-100 in PBS) for 30 min
at room temperature and then incubated with primary anti-
body overnight at 4 °C in antibody solution (2.5% BSA,
0.3 M Glycine and 1% Tween in DPBS). Murine and human
arterial sections were stained with primary antibodies
[Supplementary Table 1]. Isotype IgG control and secondary
antibody only controls were performed. For antigen retrieval,
slides were brought to a boil in 10mM sodium citrate (pH 6.0)
then maintained at a sub-boiling temperature for 10 min.
Slides were cooled on the bench-top for 30 min then washed
in deionized water (3 × 5 min) each before being washed in
PBS (3 × 5 min). The antigen retrieval protocol diminishes
endogenous eGFP and Tdt tomato transgene signals.
Therefore, those sections were co-stained with anti-eGFP an-
tibody and anti-Td tomato antibody [Supplementary Table 1].

For immunofluorescence staining, 5 consecutive images
were obtained and processed using ImageJ software™ to an-
alyze the collected images. Images were merged using the
Image color-merge channels function. Merged signals and
split channels were used to delineate the signals at single-
cell resolution. Settings were fixed at the beginning of both
acquisition and analysis steps and were unchanged.
Brightness and contrast were lightly adjusted after merging.

Immunocytofluorescent Staining of Cells

Cells seeded onto UV sterilized coverslips were fixed with
3.7% formaldehyde, (15 min, RT). If cells required perme-
abilization for the detection of intracellular antigens, cells
were incubated in 0.025% Triton X-100 PBS (room temp,
15 min). All coverslips were blocked (1 h, RT) using 5%
BSA, 0.3 M Glycine, 1% Tween PBS solution (1 h, RT).
Cells were incubated overnight with primary antibodies at
4 °C [Supplemental Table 2], then washed twice with PBS
to remove any unbound primary antibody before being incu-
bated (1 h, RT) with the recommended concentration of
fluorochrome-conjugated secondary antibodies diluted in
blocking buffer [Supplementary Table 2]. Following 2x wash
in PBS, cell nuclei were stained using DAPI: PBS (dilution
1:1000) (15 min, RT). For each primary and secondary anti-
body used, a secondary control and an IgG isotype control
was performed to assess nonspecific binding. An Olympus
CK30 microscope and FCell™ software was used to capture
images. Images were analysed using ImageJ software as de-
scribed above. Settings were fixed at the beginning of both
acquisition and analysis steps and were unchanged.
Brightness and contrast were lightly adjusted after merging.
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Chromatin Immunoprecipitation (ChIP)

ChIP was performed on cultured cells as previously described
with slight modifications [79] Protein-DNA interactions were
cross-linked in cells at 70% confluency with 1% paraformal-
dehyde (10 min, RT). Cross-linking was stopped by addition
of 125 mM glycine for 10 min and the chromatin was soni-
cated to shear chromatin into fragments of 200–600 base
pairs. The sheared chromatin was immunoprecipitated with
2 μg tri-methyl-histone H3 (Lys27) and di-methyl-histone
H3 (Lys4), while negative control was incubated with mouse
IgG and input DNA without antibody using the CHIP—IT
Express HT Kit from Active Motif (Cat no: 53018) according
to the manufacturer’s instructions [Supplementary Table 3]. A
chromatin IP DNA Purification Kit (Cat No 58002 Active
Motif) was used to purify the samples after CHIP before
PCR was performed using Myh11 promoter primers [5′ -
CCC TCC CTT TGC TAA ACA CA - 3′ and 5′ - CCA
GAT CCT GGG TCC TTA CA – 3] as previously published
[79]. Sensimix SYBR® no-ROX Bioline Kit (QT650) was
used to perform Real Time One-Step PCR according to the
manufacturers’ instructions. The antibodies used for ChIP are
outlined in Supplemental Table 1.

Quantitative PCR

Total RNA was prepared from cultured cells using the
ReliaPrep™ RNA Cell Miniprep System kit from Promega
according to the manufacturer’s protocol. Two micrograms of
RNA was used for reverse transcription with Rotor-Gene
SYBR Green RT-PCR(QIAGEN) or The SensiMix™
SYBR® No-ROX(BioLine) protocols for Real TimeOne-
Step RT-PCR using the Real Time Rotor-GeneRG-3000™
light cycler from Corbett Research using primers listed in
Supplementary Table 4.

Western Blot Analysis

Total protein (~40 μg) was resolved with SDS-PAGE and
transferred to nitrocellulose membranes. The membrane was
probed with primary antibodies [Supplementary Table 2] and
secondary anti-rabbit-anti-mouse antibody, HRP conjugated
A5278 (Sigma) and anti-rabbit antibody, HRP conjugated
A0545 (Sigma). Detection was performed using TMB
T0565 (Sigma).

Collagen Autofluorescence The level of collagen autofluores-
cence emissions was measured using recombinant 100 ng/ml
Col 1⍺1, Col 1⍺2 and Col 3A1 (Cat Nos abx065998,
abx167199 and abx066003, Abbexa, Cambridge UK)
suspended in PBS using the Load platform. Parallel experi-
ments were conducted using a Tecan Infinite 200 model mul-
tifunctional plate reader. Background levels of emissions due

to PBS were subtracted before spectra were analysed using
Prism GraphPad Software, v9.

Cell Metabolism Assays The level of glucose, glutamine and
lactate was measured in conditioned media from undifferenti-
ated stem cells before and after myogenic differentiation with
Jag-1 (1.0 μg/ml). L-Lactate and Glutamine was measured
using commercial assay kits K-GLNAM-L-Glutamine/
Ammonia Assay Kit (Rapid) from Megazyme (Megazyme
Ltd., Ireland) and Lactate Assay II kit from Sigma (Merck
KGaA, Darmstadt, Germany), according to the manufac-
turer’s instructions. Glucose consumption was measured
using GlucCell Glucose Test Strips on a GlucCell glucose
monitoring system (KDBio, UK).
Quantification and Statistical Analysis

All data were determined from multiple individual biological
samples and presented as mean values ± standard error of the
mean (SEM). All in vitro experiments were performed in trip-
licate and repeated three times unless otherwise stated. All
mice were randomly assigned to groups (including both male
and female), and the analysis was performed blind by two
groups. For statistical comparisons, all data was checked for
normal gaussian distribution before parametric and non-
parametric tests were performed. An unpaired two-sided
Student’s t test was performed to compare differences be-
tween two groups and significance was accepted when p≤
0.05. A one sample t Wilcoxon test was performed on fold
changes and significance was accepted when p≤ 0.05. An
ANOVA test was performed for multiple comparisons with
a Sidak’s multiple comparisons test for parametric data and a
Dunn’s Multiple comparison test for non-parametric data
using GraphPad Prism software v8™. and significance was
accepted when p≤ 0.001.

For PCA and LDAmultivariate analysis, the cells were first
classified to create a ground truth for each sample before the
spectral data were normalized to one by dividing the fluores-
cence intensity at each wavelength by the average background
intensity at that wavelength. Dimensionality reduction was
achieved through a Multiclass Fisher’s Linear Discriminant
Analysis (Multiclass FLDA) preprocessing filter, as previous-
ly described using WEKA machine learning tool kit, version
3.8.4 [80, 81] and further analyzed by PCA and LDA using
the multivariate statistical package, PAST4. A scatter plot of
specimens along the first two canonical axes produces maxi-
mal and second to maximal separation between all groups.
The axes are linear combinations of the original variables as
in PCA, and eigenvalues indicate amount of variation ex-
plained by these axes. When only two groups are analyzed,
a histogram is plotted. The data are classified by assigning
each point to the group that gives minimal Mahalanobis dis-
tance to the group mean. The Mahalanobis distance is calcu-
lated from the pooled within-group covariance matrix, giving
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a linear discriminant classifier. The given and estimated group
assignments are listed for each point. In addition, group as-
signment is cross-validated by a leave-one-outcross-
validation(jackknifing) procedure. To interrogate the photonic
profiles from unknown ‘mystery’ groups, i.e. data that are not
included in the discriminant analysis itself but are classified.
In this way, it is possible to classify new datasets that are not
part of the training set.

Supervised Machine Learning (ML) Supervised ML is a tech-
nique in which a model is trained on a range of inputs (or
features) which are associated with a known outcome. Once
the algorithm is successfully trained, it will be capable of
making outcome predictions when applied to new data.
Spectra from single cells across five broadband light wave-
lengths were first classified to create a ground truth for each
sample before the data were normalized as before.
Dimensionality reduction was achieved through Multiclass
Fisher’s Linear Discriminant Analysis (Multiclass FLDA),
as previously described before MLP artificial neural network
analysis was performed on each dataset using the WEKA
machine learning tool kit [81]. Once the dataset was loaded
and pre-processed using the FLDA filter, it was processed
using the “Classify” panel with the implementation for MLP
artificial neural network (ANN) analysis. ANNs are algo-
rithms which are loosely modelled on the neuronal structure
observed in the mammalian cortex and are arranged with a
number of input neurons, which represent the information
taken from each of the features in the dataset which are then
feed into any number of hidden layers before passing to an
output layer in which the final decision is presented. The al-
gorithm was iteratively improved using an optimization tech-
nique by changing the number of hidden layers (1,2.3., etc)
and the momentum (0.1–0.5) and rate of learning (0.1–0.5) to
reduce the error of prediction and then evaluated using cross-
validation. The risk of over-fitting was mitigated against when
our dataset was split into two segments; a training segment
and a testing segment to ensure that the training model can
generalize to predictions beyond the training sample. Each
segment contained a randomly selected proportion of the fea-
tures and their related outcomes which allowed the algorithm
to associate certain features, or characteristics, with a specific
outcome, and is known as training the algorithm. Once train-
ing was completed, the algorithm was then applied to the
features in the testing dataset without their associated out-
comes. The predictions made by the algorithmwere then com-
pared to the known outcomes of the testing dataset to establish
model performance. A total of 924 cells were used to create
this dataset across the five wavelengths. The initial model
algorithm had 2 hidden layers and a momentum rate of 0.2
and a learning rate of 0.3. When the additional variables of
SMC gene expression, glycolytic metabolism and Col 3A1
were included, the model algorithm had 1 hidden layer and a

momentum rate of 0.2 and a learning rate of 0.3. Performance
was evaluated based on F1 scores, an aggregate of recall and
precision, and on accuracy, the fraction of correct predictions.

Experimental Model and Subject Details

Mice Breeding and GenotypingAll procedures were approved
by the University of Rochester Animal Care Committee in
accordance with the guidelines of the National Institutes of
Health for the Care and Use of Laboratory Animals. S100β
-EGFP/Cre/ERT2 transgenic mice (JAX Labs, stock
#014160, strain name B6;DBA-Tg(S100β -EGFP/cre/
ERT2)22Amc/j) express the eGFPCreERT2 (Enhanced
Green Fluorescent Protein and tamoxifen inducible cre
recombinase/ESR1) fusion gene under the direction of the
mouse S100β promoter. Ai9 mice (Jax Labs, stock
#007909, strain name B6.Cg-Gt(ROSA)26Sortm9(CAG-

tdTomato)Hze /J) express robust tdTomato fluorescence follow-
ing Cre-mediated LoxP recombination. For lineage tracing
experiments S100β-eGFP/Cre/ERT2–dTomato double trans-
genic mice of both genders were generated by crossing S100β
-eGFP/Cre-ERT2 mice with Ai9 reporter mice. The tdTomato
transgene expression pattern corresponds to genomically
marked S100β and the eGFP transgene expression pattern
corresponds to current expression of S100β. Genomic DNA
for genotyping was prepared from mice tail and papered for
genotyping by Proteinase K lysed, isopropanol precipitated
and 70% ethanol washed. The number of animals used were
approved based on the experiments effects size. All male and
female mice were included in the study and were 8–10 weeks
old.

Carotid Artery Ligation Ligation of the left common carotid
artery was performed four weeks after Tm-induced cre-recom-
bination in randomised male and female S100β-eGFP/Cre/
ERT2–dTomato double transgenic mice, essentially as de-
scribed previously [22]. Mice that remained healthy and had
a pronounced intimal lesion after 21 days were included. Prior
to surgery mice received a single dose of Buprenorphine SR
(sustained release) analgesia (0.5–1.0 mg/kg SQ) (and every
72 h thereafter as needed). The animal was clipped and the
surgical site prepped using betadine solution and alcohol. A
midline cervical incision was made. For partial carotid artery
ligation, with the aid of a dissecting microscope, the left ex-
ternal and internal carotid arterial branches were isolated and
ligated with 6–0 silk suture reducing left carotid blood flow to
flow via the patent occipital artery. The neck incision (2
layers, muscle and skin) was sutured closed. Partial ligation
of the left carotid artery in this manner resulted in a decrease
(∼80%) in blood flow, leaving an intact endothelial monolay-
er. Buprenorphine was administered at least once post-op 6–
12 h. For complete ligation, the left common carotid was
isolated and ligated just beneath the bifurcation with 6–0 silk
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suture. In sham surgery group, carotid was similarly manipu-
lated but not ligated. The neck incision (2 layers, muscle and
skin) was sutured closed and the animal allowed recover under
observation. After 14 and 21 days, mice were perfused with
4% PFA via the left ventricle for 10 min and carotid arteries
were harvested for morphometric and histochemical analysis.

In parallel studies, cells from mouse carotids and thoracic
aorta were isolated and placed in cold Hank’s solution for
adipose tissue removal, lumen rinsing and removal of the en-
dothelium by gentle rubbing. The adventitia was enzymatical-
ly removed by incubation of the vessels in collagenase solu-
tion [i.e., MEM⍺ nucleosides GlutaMAX (2 mL) containing
Collagenase type 1A (0.7 mg/mL), soybean trypsin inhibitor
(50 mg/mL), and bovine serum albumin (1 mg/mL)] for
approx. ~ 20 min at 37 °C. Once the adventitia became lose,
it was carefully removed as an intact layer using forceps under
a dissecting microscope. The aorta was cut into 1 mm pieces
and digested with Elastase type III (Sigma) at 37 °C before the
dispersed cells were centrifuged, washed twice in Hanks
Balanced salt solution and fixed with 3.7% PFA before spec-
tral analysis on the LoaD platform.

Cell Culture and Harvesting Murine aortic SMCs (Movas
(ATCC® CRL-2797™) were cultured in Dulbeco’s
Modified Eagles growth medium (DMEM) supplemented
with 10% Fetal Bovine Serum, 2 mM L-glutamine) and 1%
penicillin-streptomycin. Murine embryonic C3H/10 T1/2
cells (ATCC® CRL-226™) were grown in Eagle’s Basal me-
dium supplemented with heat-inactivated fetal bovine serum
to a final concentration of 10% and 2 mM L-glutamine and
1% penicillin-streptomycin. Murine vSCs from mouse aorta
were grown in maintenance media (MM) containing DMEM
media supplemented with chick embryo extract (2%), FBS
embryonic qualified (1%, ATCC), B-27 Supplement, N-2
Supplement (Cell Therapy Systems), recombinant mouse
bFGF (0.02 μg/mL), 2-Mercaptoethanol (50 nM), retinoic
acid (100 nM), Penicillin-Streptomycin (1%). J774A.1 mouse
BALB/c monocyte macrophages were a kind gift from Prof
Christine Loscher, DCU and were grown in DMEM supple-
mented with 10% Fetal Bovine Serum, 2 mM L-glutamine
and 1% Penicillin-Streptomycin. Human Burkitt’s lymphoma
B cells (Ramos B cells) were a kind gift from Prof Dermot
Walls, DCU and were grown in RPMI 1640 supplemented
with 10% Fetal Bovine Serum (Heat inactivated), and 1%
penicillin-streptomycin.

Isolation of S100β/Sca1+ Murine Resident Vascular Stem Cells
(vSCs)Using an optimised cell dissociation protocol, mVSc
from mouse aorta were isolated using sequential seeding
on non-adherent and then adherent plates. Mouse thoracic
aortas (4 at a time) were harvested and placed in cold
Hank’s solution for adipose tissue removal and lumen rins-
ing. The adventitia was enzymatically removed by

incubation of the vessels in collagenase solution [i.e.,
MEM⍺ nucleosides GlutaMAX™ (2 mL) containing
Collagenase type 1A (0.7 mg/mL), soybean trypsin inhib-
itor (50 mg/mL), and bovine serum albumin (1 mg/mL)]
for approx. 10–20 min at 37 °C. Once the adventitia be-
came lose, it was carefully removed as an intact layer using
forceps under a dissecting microscope. The aorta was cut
into 1 mm pieces and digested with Elastase type III
(Sigma) at 37 °C. Dispersed cells were centrifuged and
washed twice in warm maintenance medium (MM)
(DMEM supplemented with 2% chick embryo extract,
1% FBS, 0.02 μg/mL, bFGF basic protein, B-27
Supp l emen t , N -2 supp l emen t , 1% Pen i c i l l i n -
Streptomycin, 50 nM 2-Mercaptoethanol and 100 nM
retinoic acid) before seeding (1st seeding) on a 6-well
non-adherent plate in MM. At 48 h, suspension cells were
transferred (2nd seeding) to a fresh well of a CELLstart™
pre-coated 6-well plate in MM. MM was added to the re-
maining cells in the non-adherent surface. Cells were incu-
bated at 37 °C, 5% CO2 for 1 week with minimal distur-
bance. The stem cells exhibited a uniform neural-like mor-
phology in low density culture adopting a dendritic-like
tree shape and retaining their morphological characteristics
at low density throughout repeated passage. Cells were fed
with MM every 2–3 days and passaged every 3–4 days or
when ~70% confluent.
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