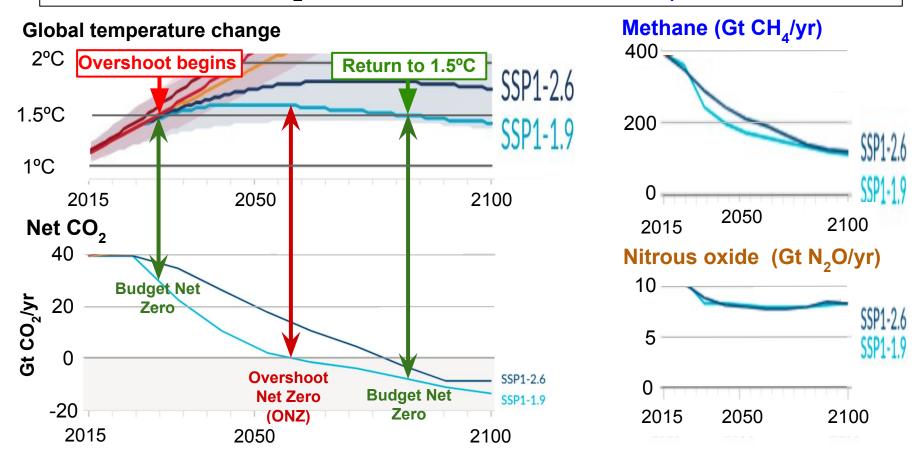
Methane mitigation achievement, including agriculture, is crucial to limiting dependence on uncertain CDR in national carbon budgeting equitably meeting Paris goals

Paul R. Price, Barry McMullin and Aideen O'Dochartaigh

Dublin City University



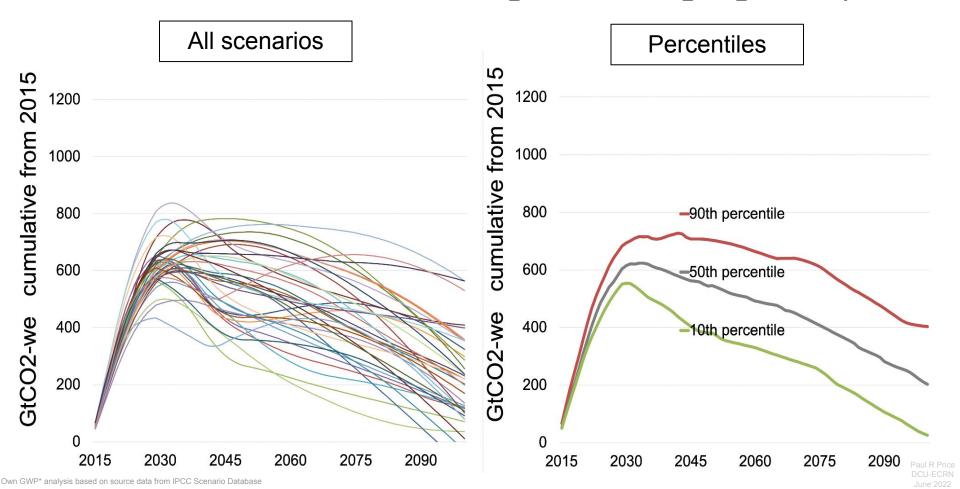
IPCC AR6 WGI Paris-consistent scenarios 2015–2100

Paul R Price DCU-ECRN June 2022

Paris-consistent ≈ CO₂ net zero by 2055–2070 and CH₄ cut by 50% by 2050

1.5°C goal: global overshoot, but wealthy nation overshoot is earlier!

- Developed Parties: overshoot likely imminent, needs early action to limit it.
- Implications for "net zero": define two distinct net zero points
 - Overshoot Net Zero (ONZ) = "no further warming" = peak carbon debt.
 - Quota Net Zero (QNZ) = timing of return to fair share temperature quota.


<u>In addition to radical reductions in gross CO₂ emissions:</u>

- Net negative emissions to *limit* peak overshoot <u>and</u> to *return* to global budget level (or national fair-share) = cancelling carbon debt.
- Permanent CH₄/yr cut = one-off CO₂ removal ⇒ equivalent to CDR.

Assess UNFCCC Party climate action: carbon budgeting & warming impact

- need to include CO₂ and non-CO₂ GHGs, especially CH₄.
- ⇒ Ireland as a case study: Compare by-gas & aggregate warming impact.
- Can use the same methodology and tool for any nation.

1.5C lowOS scenarios: GWP* CO₂we for [CO₂+N₂O+CH₄]

Principles for Paris-consistent carbon budgeting Normative choices are unavoidable but necessary.

Assessments must make equity parameters explicit.

- Prudence: global goal at least 50% chance of limiting to 1.5°C
- Responsibility: define base year (2015?) as essential to:
 - ⇒ assess historic responsibility **AND** remaining carbon budget.
- Equity: Many "fair sharing" possible principles eg. equal per capita.

Calculating multigas global budgets and "fair share" national quotas

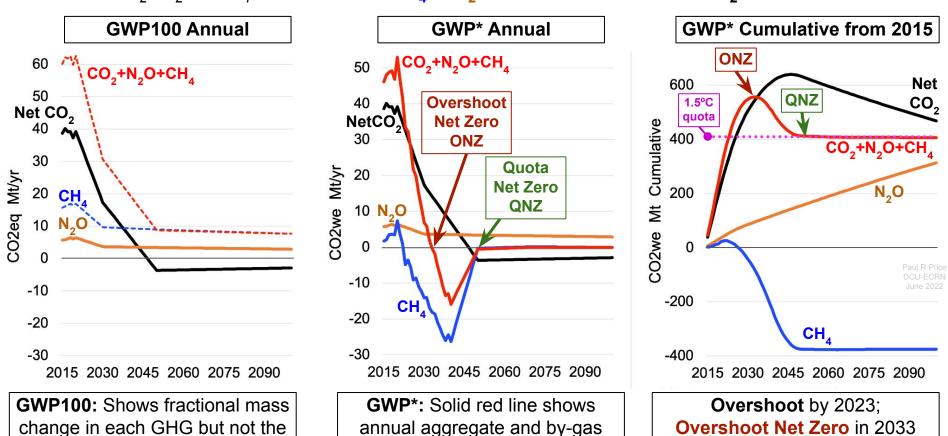
- GWP100 GHG metric does not reflect °C impact for short-lived GHGs.
- Appropriate use of step-pulse GHG equivalence methods such as GWP*, based on GWP100, enable rapid °C impact analysis by acting as a simple climate model.

Cumulative CO, warming equivalent (= CO, we) via GWP* from defined base year

- Shows aggregate temperature impact of a scenario of defined GHG pathways.
- GWP* enables inclusion of CH₄ & N₂O with CO₂ in carbon budgeting analysis.

Ireland: a case study of overshoot CH₄ & CDR pathways:

- Ireland has big non-CO₂ emissions from CH₄ & N₂O.
 CH₄ up 19% since 2010, due to substantial ruminant agriculture including policy-directed expansion of dairy production since 2010;
- 2018: Total 68.3 MtCO₂eq CH₄: 17 MtCO₂eq N₂O: 6.6 MtCO₂
- Ireland's recently amended Climate Act 2021:
 - Strongly worded Paris-consistent basis:
 'The Minister and the Government shall carry out their respective functions ... in a manner that is consistent with Articles 2 and 4(1) of the Paris Agreement'
 - Sets out a programme of 5-year carbon budgets from 2021 onwards; first two budgets accepted.
- Note: Ireland's practical policy limit CDR = 200 MtCO₂ as assessed by McMullin et al. (2020) see NegCO2 Conference paper

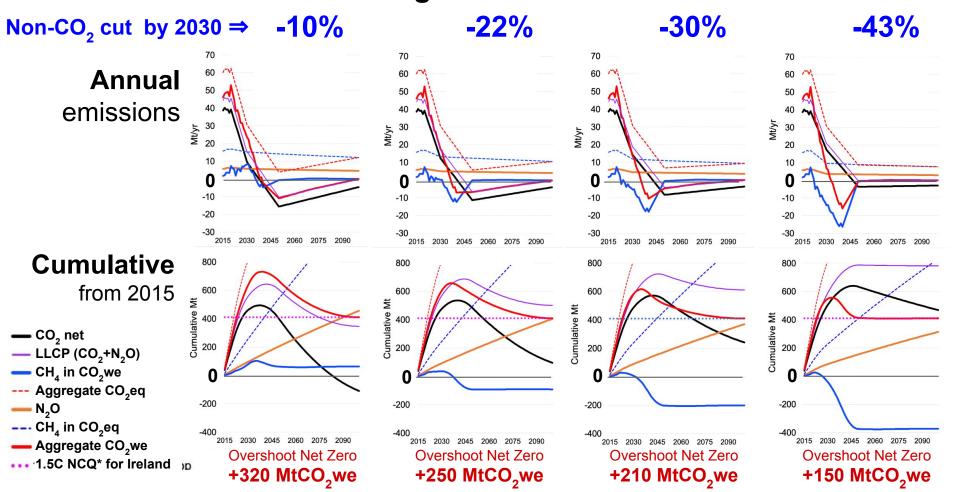

Global [CO₂+N₂O+CH₄] budgets & national quota shares from

Annual global CO_2 we emissions in 2015 = **20.6 5**t CO_2 we

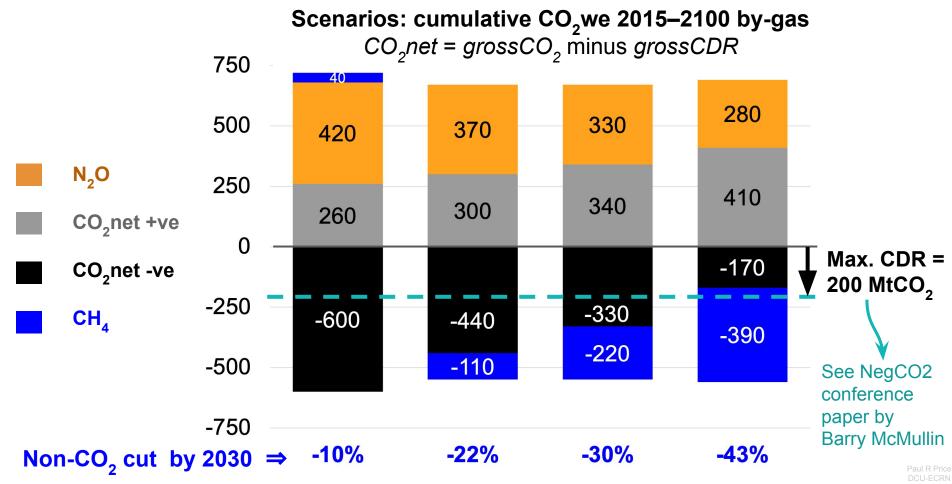
1.5C low overshoot (37 scenarios)	Percentile		
	10th	50th	90th
	Low	Mid	High
	2015–2100	2015–2100	2015–2100
,	value	value	value
[CO2+N2O+CH4] rGCB* in GtCO2-we	562	641	768
2015 remaining tCO2we per capita	76	86	103
Ireland NCQ* = quota for 1.5°C:			
2015 population in millions IDI		4.7	
2015 population in millions IRL			

A scenario meeting a "fair-share" 1.5°C national CO₂we quota (NCQ*) from 2015

Multigas $[CO_2+N_2O+CH_4]$ analysis for: $CH_4 \& N_2O$ cut by 43% by 2030. CO_2 to net zero by 2050.



temperature contributions


Quota Net Zero in 2047

temperature impact?

Ireland: Four illustrative mitigation scenarios 2015–2100

Only deepest CH₄/yr rate cut, limits CDR requirement within assessed max. CDR

Findings for science-policy interface and carbon budgeting:

- 1. Paris-aligned, multi-gas remaining global budgets, including non-CO₂ (CH₄ & N₂O), can be estimated from a given base year using a step-pulse method such as GWP*. National fair share quotas can be derived by explicit allocation.
- For developed nations Paris fair share quota-exceedance is imminent.
 Therefore, policymakers urgently need to plan to limit peak carbon debt at
 Overshoot Net Zero and achieve earliest possible return to Quota Net Zero.
- 3. **Permanent reduction in CH₄/yr rate equates to substantial CDR:** In mitigation scenarios CH₄ mitigation may be critical to staying within practical CDR limits. Early and deep CH₄ mitigation reduces CDR reliance.
- 4. "Hard-to-abate" sectors do have to be abated to meet national quotas:
 ⇒ In Ireland, cutting agricultural CH₄ from beef & dairy cattle is likely <u>crucial</u> to meeting "fair share" °C quota limiting CDR reliance within practical 200 MtCO₂ limit.

Global 1.5°C: IPCC AR6 scenario

As shown here from Rogelj et al. 2021...

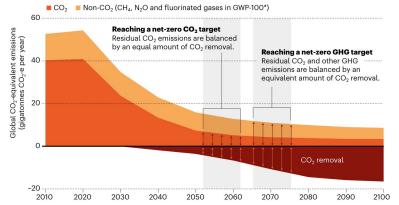
- This scenario indicates <1.3 °C by 2100
 - = Much more CDR than for 1.5°C stabilisation?

⇒ Suggests long-term ongoing CH₄ is offset by CDR via GWP100 CO₂eq??

This does not make sense in °C terms:
 slow CH₄/year reduction results in stable °C.

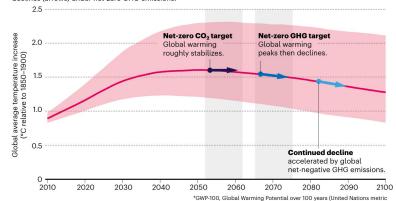
But Paris ambition is 1.5°C not 1.3°C.

So the IPCC scenario may:


- Increase risks of CH₄ mitigation deterrence (especially if continuing CH₄ emissions are offset on a misleading CO2e basis)
- Increase risks of North/South & generational inequity by exaggerating necessary CDR amount & cost.

IT'S ALL IN THE DETAIL

Choosing different gases, different timing for net-zero emissions and different methods of aggregating emissions can have very different outcomes.


Global greenhouse-gas (GHG) emissions

Illustrative pathway for reaching net-zero carbon dioxide and net-zero GHG emissions (from ref. 3).

Global-warming implications

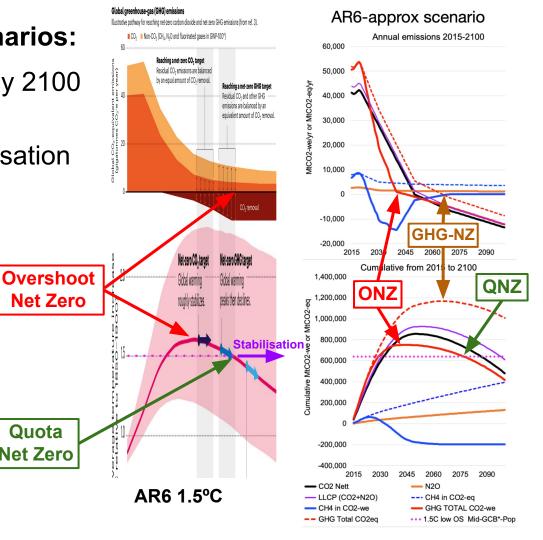
Estimated global temperature peaks (in pink) and declines (arrows) under net-zero GHG emissions.

Rogelj, J., Geden, O., Cowie, A., Reisinger, A., 2021. Net-zero emissions targets are vague: three ways to fix. Nature 591, 365–368. https://doi.org/10.1038/d41586-021-00662-3

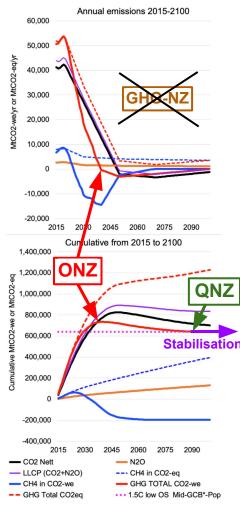
for transferring emissions of different gases to a common scale).

Paul R Pri

Global scenarios:


AR6 1.3°C by 2100

versus


1.5°C Stabilisation

Quota

Net Zero

Stabilisation scenario

Thank-you...

Questions?

Full paper title:

Methane mitigation achievement, including agriculture, is crucial to limiting dependence on uncertain carbon dioxide removal in national carbon budgeting equitably meeting Paris goals

Email: paul.price@dcu.ie

