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Abstract

Cryptocurrencies have become a prominent investment tool recently with increasing interest in them and
their relationships with stock and foreign exchange markets. We analyze here the cross-correlations of price
changes of different cryptocurrencies using Random Matrix Theory and extract community structures by
constructing minimum spanning trees, finding their eigenvalues contrast sharply with universal predictions
of Random Matrix Theory. We reveal distinct transient community structures among different groupings
of cryptocurrencies. By studying the cross-correlation dynamics of sub-communities we find evidence of
collective behaviour. Furthermore, we compare eigenvalue changes and find prominent groupings following
a community trend, useful for creating cryptocurrency portfolios.
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1. Introduction

The exponential increase of Bitcoin and other cryp-
tocurrencies have gained substantial attention in re-
cent years. Bitcoin is a type of decentralized digi-
tal currency [1], where Decentralized means Bitcoin
is peer-to-peer payment and is not regulated by any
third party. Moreover, this Cyptocurrency is inde-
pendent of any other commodity market in the world.

Bitcoin’s value has surged in the last few year
and massive massive demands for the cryptocurrency
have led it to reach an all-time high of USD 19,891 in
December 20171. Therefore, it is crucial to be able to
forecast the value of Bitcoin to secure profitable in-
vestments. Recently, cryptocurrencies have become
a investment tool where trading is carried out akin to

1https://www.oanda.com/currency/converter/

trade in stock and foreign exchange market. Various
trading platforms are available where you can buy
and sell such assets [2].

Investors of cryptocurrencies commonly use tradi-
tional methods [3, 4] in the stock market trading.
For instance, the basic notion of buying the com-
modity when at a low price and selling at a high
price is applied by the investors. Risks are evalu-
ated ahead in time of investing and one such method
commonly used for risk analysis is Market Technical
Analysis (MTA). MTA recognizes the trend of the
market given the historical market data. In such an
analysis, candle graphs and market technical indica-
tors [5] are used. However, such graphs are difficult
and require experts to interpret. Furthermore, tech-
niques like the Efficient Market Hypothesis (EMH)[6]
are used to analyze market trends. However, the re-
sults of EMH would be inconsistent, as according to
Fama [7], [8] for analysis to work the prices should
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follow a random walk. Other such technical indica-
tors such as Williams %R as a momentum indicator
and Exponential Moving Average (EMA) can also
be used as trend indicators [9]. EMA is the average
movement of market price over some time, while %R
represents the strength of the overbought or oversold
market.

Financial markets can be represented as complex
systems that have been vastly researched upon by
physicists using methods used to describe complex
systems [10, 11, 12]. Research into correlations be-
tween financial assets has been an area of interest
for understanding the market as a complex system
and also for developing investment portfolios [13, 14].
One of the key questions that arises is whether the
correlations in financial time series is a result of noise
or genuine interactions [15, 16] when market condi-
tions are not always stationary and historical data
are finite. Hence, it is a challenging task to quantify
the interactions in financial systems.

The problem of quantifying correlations between
different financial systems is studied by Plerou et
al., [17]. They propose a method where the cross-
correlation matrix is used to identify the correlation
coefficients between different assets. The authors
speculate that the corresponding matrix eigenvalues
represent the collective behaviour of the market [17].
One can use these eigenvalues to analyze asset corre-
lations, such as identifying the non-random proper-
ties of the system through deviations from universal
predictions of the Random Matrix Theory (RMT)
[16, 18, 19, 20] and to reveal internal community
structure (i.e. groups of cryptocurrencies that be-
have similarly).

Previously, such correlations have been a strong
area of research [18, 21] revealing collective mar-
ket behaviour and correlations that spread through-
out the entire system [17, 16, 19]. Gopikrishnan, et
al., [22] have discovered correlations being localized
within various business sectors.

In recent years, the cryptocurrency market has
created a new benchmark in the financial world.
More than two thousand2 cryptocurrencies are be-

2https://coinmarketcap.com/coins/

ing traded in the market which relies on the same
blockchain technology that is derived from Bitcoin or
other similar currencies. Furthermore, cryptocurren-
cies are unique and extensively complex compared to
other financial markets because of the unique nature
of each cryptocurrency. Stosic et al., [23] have previ-
ously studied the interactions to investigate whether
correlations in the market of cryptocurrencies exhibit
similar properties to those of other financial markets.
Ankenbrand and Bieri [24] examined the financial
characteristics of cryptocurrency markets have con-
cluded that currently no consensus exists on their
uniqueness as a market or whether there exist simi-
larities to other asset classes (e.g. stocks, bonds, com-
modities or foreign exchange). Reinforcing this, and
investigating Cryptocurrency volatilities, Baur and
Dimpfli [25] reported - for the 20 largest cryptocur-
rencies - a very different asymmetry as compared to
equity markets: positive shocks increase volatility to
a greater extent than negative shocks.

The proposed work updates and extends the re-
search done by Stosic et al., [23]. We take the his-
torical prices of 2 sets of cryptocurrencies with 119
in one and a smaller subset in the other over a to-
tal period of 300 days (April 18, 2017 to February
11, 2018) and analyze their cross-correlation dynam-
ics and construct minimum spanning trees to identify
distinct community structures and study their collec-
tive behaviour.

The paper covers the following: Section 2 covers
the research done previously by various researchers.
Section 3 describes the dataset we have used for this
study. Section 4 describes the statistics of correlation
matrix followed by Section 5 which depicts the meth-
ods that we have used to study the cross-correlation
dynamics and construct a minimum spanning tree to
reveal community structures. Lastly, Section 6 sum-
marizes the findings of this study.

2. Literature Review

Various articles and research articles and studies
have been put forth in the past on forecasting market
values. Guglielmo et al., [26] have examined 4 types
of cryptocurrencies over the sample period of 2014-
2017. They follow two approaches viz. Rescaled-
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Range R/S analysis and fractional integration. Time
variation is particularly evident in the case of Lite-
coin, with the Hurst exponent dropping significantly
from 0.7 in 2015 to 0.5 in 2017. Their findings indi-
cate the market is persistent and its degree changes
over time and conclude that the cryptocurrency mar-
ket is inefficient.

Urquhart [4] has purposed another analysis of Bit-
coin to study the market efficiency of Bitcoin and
have used Hurst exponent analysis. The analysis
shows when the full sample period is split into two
sub-samples, the first sub-sample period rejects the
null hypothesis of randomness and the R/S Hurst
statistic indicates strong anti-persistence. However,
when the second sub-sample period was studied, the
Ljung-Box and Auto Variance Test (AVR) tests both
fail to reject the null hypothesis, indicating absence
of auto-correlation. This means that Bitcoin is ineffi-
cient, meaning investors cannot use previous informa-
tion to forecast future values. The results obtained
show that Bitcoin is efficient in the long run but cur-
rently the market is very volatile.

Bariviera [27] performed Hurst exponent analysis
on Bitcoin computed using two alternative methods,
Detrended Fluctuation Analysis (DFA) method for
more robust results compared to the more commonly
used R/S method. He found that the daily volatility
of the market (as a proxy for the market risk) exhibits
long memory over the time period studied. Rebane
et al., [28] have used Auto-regressive integrated mov-
ing average (ARIMA) and Seq2Seq Recurrent Neural
Network(RNN) on Bitcoin and Altcoin to determine
the best method to predict future values. The com-
parative analysis showed neural networks performed
dramatically better than ARIMA as the cumulative
errors were less for RNN. Furthermore, including so-
cial data from websites along with RNN reduced the
error rate.

Karakoyun and Cibikdiken [29] have compared
ARIMA and Long Short-Term Memory (LSTM) for
forecasting values of Bitcoin and prices of the next
30 days were estimated. The results obtained were
approx. 11.86% Mean Absolute Percentage Error
(MAPE) with ARIMA against 1.40% MAPE with
LSTM. The analysis used 1600 observations as train-
ing to predict the next 30 days. However, for LSTM

only last 30 days are used to predict next days prices
as compared to the whole set of observations used in
ARIMA.

Bakar and Rosbi [3] have also put forth a study
of forecasting on Bitcoin using ARIMA and results
indicate a non-stationary time series and obtain a
MAPE of 5.36% over the period from January 2013
to October 2017. Kinderis et al., [30] have exam-
ined Bitcoin fluctuations using text mining of news
articles and tweets to infer the relationship between
these and cryptocurrency price direction using uses
LSTM RNNs and a mix of hybrid models. Their
modelling achieves higher accuracy in predicting the
direction. However, their study indicates that senti-
ment analysis does not have an immediate effect on
the cryptocurrency market.

Stosic et. al. [23] have examined 119 dif-
ferent cryptocurrencies and analysed their cross-
correlation matrix. Their findings indicate that
the cross-correlation matrix of cryptocurrencies price
changes exhibits non-trivial hierarchical structures
and groupings in cryptocurrency pairs. For partial
cross-correlation, anti-correlation was dominant in
the matrix elements. Moreover, the findings revealed
that most eigenvalues do not agree with universal
predictions of the Random Matrix Theory (RMT),
which is the exact opposite to the case of financial
markets[19]. Later, the analysis of deviations from
RMT revealed that the largest eigenvalue and its
eigenvector represents the influence of the entire cryp-
tocurrency market.

Dyhrberg and Haubo [31] explore the hedging ca-
pabilities of Bitcoin by applying Generalized Autore-
gressive Conditional Heteroskedasticity (GARCH)
methodology. Their results indicate that Bitcoin
has hedging capabilities against the Financial Times
Stock Exchange (FTSE) and the American Dollar.
They conclude that Bitcoin can be used alongside
gold to minimize specific market risks. However, it
should be emphasized that the correlations against
the dollar are very small in value and indicative of
short term capabilities.

Klein et. al. [32] have also performed sim-
ilar research into Bitcoin as a hedge. They
initially analyse and compare the conditional
variance properties of Bitcoin and gold. Next,
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they have implemented a Baba-Engle-Kraft-
Kroner (BEKK-GARCH) model to estimate time-
varying conditional correlations. Results obtained
showed Bitcoin behaves exact opposite of gold
and a positive correlation exists with downward
markets. In conclusion, and in contrast to [31],
Bitcoin and gold are fundamentally different which
showed no evidence of Bitcoin having stable hedging
capabilities.

To summarize, previous studies done on the cryp-
tocurrency market are limited to researchers focus-
ing on selecting a few currencies based on market
capital, volatility and crash in the market. Studies
are often contradictory and the overalll lessons that
can be taken regarding Bitcoin and other Cryptocur-
rences are regarding their volatility, differential be-
haviour vis à vis other asset classes and consequent
hedging properties. Also, despite the growing inter-
est in dynamic correlations and its central role in
the estimation of dynamic correlations, several im-
portant issues relating to this representation seem to
have been ignored in the financial econometrics lit-
erature. Caporin et al [33] mention these important
issues include the absence of any derivation of dy-
namic conditional correlations and its mathematical
properties, and a lack of any demonstration of the
asymptotic properties of the estimated parameters.
In fact, most published papers dealing with dynamic
correlations simply do not discuss stationarity of the
model, the regularity conditions, or the asymptotic
properties of the estimators. In our study, we have
considered a large set of cryptocurrencies to analyze
their behaviour in the market. Thus, identifying key
groupings of cryptocurrencies for investing and fur-
ther research.

3. Data

To study evidence for their collective behaviour, we
take the daily closing prices of the cryptocurriences
from the source3. The data was collected from the

3https://data.world/pmohun/complete-historical-
cryptocurrency-financial-data

website coinmarketcap4. We preprocessed our data
into two sets of cryptocurrencies denoted by N . First
set of N = 150 cryptocurrencies is listed in Table 1
and second set of N = 59 cryptocurrencies is listed
in Table 2. For the first set, we take the data for 150
days (i.e 150 observations, 1 observation per day) as
the data was limited, which is denoted by L = 150.
We then take two time period windows of L = 150
days from April 18, 2017 to February 11, 2018 for
N = 59 to increase the Q factor. This was because
data was only available on the 119 Cryptocurrencies
in Table 1 for 200 days (i.e continuous data) but con-
sidering only a subset of Cryptocurrencies (in Table
2) gives 300 days of continuous data during this pe-
riod.

4https://www.coinmarketcap.com/
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Table 1: List of 119 cryptocurrencies

Cryptocurrency
0x bytecoin-bcn ethereum melon qtum tether

adx-net bytom
ethereum-
classic

metal
quantum-
resistant-
ledger

tierion

aeternity centra ethos mobilego raiblocks triggers
agoras-
tokens

civic
experience-
points

monaco reddcoin tron

aragon coindash factom monacoin ripple ubiq
ardor counterparty funfair monero rlc vechain
ark dash gamecredits nav-coin santiment verge
asch decentraland gas neblio siacoin veritaseum
augur decred gnosis-gno nem singulardtv vertcoin

bancor dent golem-
network-tokens

neo skycoin viacoin

basic-
attention-
token

dentacoin gulden nexus smartcash wagerr

binance-coin digibyte gxshares nxt sonm walton
bitbay digitalnote hshare omisego status waves
bitcoin digixdao iconomi paccoin steem wings
bitcoin-cash dogecoin ion particl stellar xtrabytes
bitcoindark e-coin iota peercoin storj zcash
bitcore edgeless komodo pillar stratis zclassic

bitshares einsteinium lisk pivx
supernet-
unity

zcoin

blocknet emercoin loopring poet syscoin zencash
byteball eos maidsafecoin populous tenx
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Table 2: List of 59 cryptocurrencies (numbers refer to nodes shown
in Figure 7)

Cryptocurrency
1. agoras-tokens 21. ethereum-classic 41. reddcoin
2. ardor 22. experience-points 42. siacoin
3. augur 23. factom 43. singulardtv
4. bitbay 24. gamecredits 44. steem
5. bitcoin 25. golem-network-tokens 45. stellar
6. bitcoindark 26. gulden 46. stratis
7. bitshares 27. iconomi 47. supernet-unity
8. blocknet 28. ion 48. syscoin
9. byteball 29. lisk 49. tether
10. bytecoin-bcn 30. maidsafecoin 50. triggers
11. counterparty 31. monacoin 51. ubiq
12. dash 32. monero 52. ripple
13. decred 33. nav-coin 53. verge
14. digibyte 34. nem 54. vertcoin
15. digitalnote 35. neo 55. viacoin
16. digixdao 36. nexus 56. waves
17. dogecoin 37. nxt 57. zcash
18. einsteinium 38. paccoin 58. zclassic
19. emercoin 39. peercoin 59. zcoin
20. ethereum 40. pivx

4. Statistics of cross-correlation Matrix

In order to calculate the correlations, we first calcu-
lated the return of cryptocurrency i = 1, . . . , N over
a time scale ∆t

Gi(t) ≡ lnSi(t+ ∆t)− lnSi(t), (1)

where Si(t) denotes the price of cryptocurrency i and
we take ∆t = 1 day. As different currencies have
different values of volatility (standard deviation) we
therefore take normalized returns.

gi(t) ≡
Gi(t)− 〈Gi〉

σi
, (2)

where σi ≡
√
〈G2

i 〉 − 〈Gi〉2 is the standard deviation

of Gi and 〈. . . 〉 denotes the time average over the pe-
riod studied. We then calculate the cross-correlation
matrix C

Cij ≡ 〈gi(t)gj(t)〉 (3)

where Cij = 1 represents maximum correlation,
Cij = −1 represents maximum anti-correlation, and
Cij = 0 represents uncorrelated pairs of cryptocur-
rencies.

The cross-correlation matrix for the second set of
N = 59 cryptocurrencies for the two time windows
of L = 150 days each is shown in Figure 1 and Fig-
ure 2 respectively. We present the results from the
second set of cryptocurrencies as during our initial
experimentation on the first set of N = 119 cryp-
tocurrencies exhibit odd results as mentioned further
when we apply Kolmogorov-Smirnov test. It should
be noted that there are many pairs with high positive
correlation and few areas where the cryptocurrencies
are uncorrelated. There are some cryptocurrencies
which exhibit strong anti-correlation with the rest of
the market such as zcoin and iconomi. This implies
the existence of non-trivial groupings in the market
as previously suggested by Stosic et al., [23].
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Similarly, looking at the cross-correlation matrix
for the second time window, we can see that anti-
correlation is more dominant among pairs of cryp-
tocurrencies in the matrix. Interestingly, for zcoin
and iconomi anti-correlation are less pronounced
now, as compared to the previous correlation ma-
trix which exhibited strong anti-correlation with the
market. Also, certain pairs at the end now exhibit
more anti-correlation with the overall market. Hence,
providing additional support to the existence of non-
trivial groupings.

5. Research Methodology

This section describes the analysis of noise done
using Random Matrix Theory and further illustrates
the use of minimum spanning trees to discover com-
munity structure among cryptocurrencies.

5.1. Noise Dynamics from Random Matrix Theory

To find more explicit correlation structures, we
use statistics from Random Matrix Theory to ex-
tract genuine correlations between cryptocurrencies
prices. Random Matrix Theory (RMT) was devel-
oped to explain the statistics of energy levels of com-
plex quantum systems in nuclear physics [34] with
RMT universal predictions represent overall average
interactions [35, 34]. Deviations from these predic-
tions reveal non-random properties that are specific
to the system and arise from the collective behaviour
among cryptocurrencies.

RMT has been previously used in financial market
analysis [18, 16] and has been widely used to iden-
tify cross-correlations in stock markets [21]. To find
the information of cross-correlations of the market,
we take the cross-correlation matrix and compare it
with a random matrix. The correlation matrix can
be written as

C =
1

L
GGT , (4)

where G is an N × L matrix with elements gik ≡
gi(k∆T ) for i = 1, ..., N and k = 0, ..., L. We then
consider a random matrix such that

R =
1

L
AAT , (5)

where A is an N x L matrix with N time series of L
random elements with zero mean and unit variance.

For N →∞ and L→∞ such that Q = L/N , the
probability density function PRMT (λ) of eigenvalues
λ of the random matrix R is given by

PRMT (λ) =
Q

2π

√
(λ+ − λ)(λ− λ−)

λ
, (6)

for λ within the bounds λ− ≤ λi ≤ λ+, where λ− and
λ+ represent the minimum and maximum eigenvalues
given by

λ± = 1 +
1

Q
± 2

√
1

Q
, (7)

We study the statistics of C and compare with the
universal properties of Random Matrix Theory [36].

We calculate the eigenvalue distribution and com-
pare it with the matrix R generated from random
time series. For N = 59 and L = 150 the eigen-
value bounds are λ− = 0.13 and λ+ = 2.64 and the
Q5 = 2.54. Figure 3 shows the bulk of the eigen-
values of C for λi ∈ λbulk falls within the bounds
λ− < λbulk < λ+ for PRMT (λ). However, it can be
seen that most eigenvalues deviate from the universal
predictions of RMT as suggested earlier by Stosic et
al., [23]. Similarly, we see there are deviating eigen-
values from RMT on the upper bound λ+ = 2.64
for the largest few eigenvalues, which suggest gen-
uine information exists between cross-correlation of
cryptocurrencies. Further, we analyze the deviations
of P (λ) from PRMT (λ) by checking the statistics of
the eigenvector components uik, k = 1, ..., N . We do
so by analyzing the distribution of these components,
ρ(u). RMT predicts that the components of the nor-
malized eigenvectors of a random correlation matrix
R are distributed according to Gaussian with zero
mean and unit variance [36].

ρRMT (u) =
1√
2π
e−u2/2 (8)

Figure 4 shows ρ(u) for an eigenvector ui from
the bulk shows good agreement with predictions from

5Q is the defined as ratio of rows and columns of the matrix
L/N
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Figure 1: Cross-Correlation, Cij of 59 Cryptocurrencies for the first window of 150 days
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Figure 2: Cross-Correlation, Cij of 59 Cryptocurrencies for the second window of 150 days
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RMT. However, eigenvectors corresponding to eigen-
values outside the bulk (or λi > λ+ deviate from
the ρRMT (u). From Figure 5 we can see that for an
eigenvalue outside the bulk the distribution is nearly
uniform, which is similar to that suggested by Stosic
et al., [23] in their analysis of eigenvector distribu-
tion.

We also further use Kolmogorov–Smirnov (KS) test
to check whether the eigenvector components of devi-
ating eigenvalues from the predictions of RMT come
from the same distribution as those from the bulk.
Surprisingly, for the initial cross-correlation matrix
C with N = 119 and L = 150, we find that KS test
fails to reject the null hypothesis. This could have
something to do with the Q factor. As we had lim-
ited data the only way to increase the Q value was for
the number of cryptocurrencies to decrease. There-
fore, we consider a smaller subset of cryptocurrencies
for further analysis.

Thus, we conducted KS tests with the N = 59
and L = 150 for the two time windows of L = 150
days each and we find that KS test is rejected. This
suggests genuine information exists in the eigenvector
components of eigenvalues outside the bulk.

As we move further from the upper bound λ+ of
RMT, the deviations of ρ(u) are more significant. We
therefore further quantify the components that par-
ticipate in each eigenvector, which shows the degree
of deviation of the distribution of eigenvectors from
RMT [17]. We use the Inverse Participation Ratio6

(IPR) [36, 37] to quantify the following, as defined
by:

Ii =

N∑
k=1

[uik]4, (9)

where uik, k = 1, ..., N are the components of eigen-
vector ui.

Figure 6 shows that the average value of Ii is
0.12, suggesting that almost all cryptocurrencies con-
tribute to the eigenvectors, which was also evident in
the research done by Stosic et al., [23]. They also

6Inverse Participation Ratio essentially can be interpreted
as the reciprocal of the number of eigenvector components that
contribute significantly.

suggested that lack of deviations from I at the end
of the eigenvalue spectrum implies that eigenvectors
are not localized.
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Figure 3: Eigenvalue distribution P (λ) for cross-correlation matrix C computed from N = 59 and L = 150

Figure 4: Distribution ρ(u) of eigenvector components for a eigenvalue in the bulk λ− < λ < λ+
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Figure 5: Distribution ρ(u) of eigenvector components for two eigenvalues, one from the bulk λ− < λ < λ+ (blue) and one
from λi > λ+ (red)
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Figure 6: Inverse participation ratio (IPR) as a function of eigenvalue λ for the cross correlation matrix C.
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Table 3: Distinct Communities Groups By Color For First Time
Window of 150 days of 59 Cryptocurrencies

Groups By Color
Red Lgreen Purple Blue Orange Green Black Brown
agoras-
tokens

bitshares bitbay decred byteball ardor bytecoin-bcn monacoin

augur digibyte blocknet digixdao
golem-
network-
tokens

bitcoindark counterparty stellar

bitcoin dogecoin ethereum
ethereum-
classic

iconomi dash emercoin
supernet-
unity

peercoin nav-coin factom
experience-
points

neo digitalnote gulden syscoin

ripple nxt ion lisk paccoin einsteinium maidsafecoin vertcoin
nem singulardtv zclassic gamecredits monero
nexus triggers zcoin pivx ubiq
siacoin waves reddcoin
steem zcash viacoin
stratis
tether
verge
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Table 4: Distinct Communities Groups By Color For Second Time
Window of 150 days of 59 Cryptocurrencies

Groups By Color
Red Lgreen Purple Blue Orange Green Black Brown

bitshares ethereum augur bitcoindark bitcoin ardor
agoras-
tokens

decred

dogecoin nem bitbay bytecoin-bcn
experience-
points

dash byteball digixdao

einsteinium nexus blocknet digibyte ion
ethereum-
classic

golem-
network-
tokens

lisk

monero siacoin counterparty digitalnote neo monacoin iconomi pivx
nxt tether emercoin gulden peercoin stellar singulardtv
syscoin factom maidsafecoin ripple stratis steem

gamecredits nav-coin vertcoin triggers
paccoin reddcoin waves zcash
supernet-
unity

viacoin zcoin zclassic

ubiq
verge

5.2. Community Structures from Minimum Spanning
Trees

Financial markets have been previously modelled
by translating their correlations into networks by us-
ing a distance matrix D defined as

Dij =
√

2(1− Cij), (10)

Network-based models for studying correlations in fi-
nancial time series have been proposed by, e.g., [38].
In these methods the distance matrix D are defined
as adjacency matrix, A = D. The Minimum Span-
ning Tree (MST) is the most-used network in the
analysis of financial time series. MSTs are types of
network that connect all nodes without having any
loops. Therefore these have N nodes, and N − 1
edges to connect them. The minimum refers to the
fact that the sum of all edges is minimum for all span-
ning tress defined on the distance matrix [38].

We next construct the MST using a smaller subset
of cryptocurrencies (59) to analyze their collective
behaviour in the market. Figure 7 shows the MST

network for the correlation matrix C with N = 59
and L = 150. We can see that the network is split
into various groups and densely connected. However,
this network is not enough to quantify the structures
among them. Therefore, we further move to commu-
nity detection methods such as developed by Blondel
et al., [39]. Their algorithm is similar to other com-
munity detection algorithms such as Girvan-Newman
[40]. Although, it uses heuristics that are based on
modularity optimization which is more robust and
requires less computing.

We use the community detection algorithm to re-
veal distinct communities as shown in Figures 8 and
9 for the two time windows from the cross-correlation
matrix of 59 cryptocurrencies respectively. These dis-
tinct communities represent (we speculate) collective
behaviour in the market. This would seem to be in
contrast to the concept of some major cryptocurren-
cies influencing the whole market, as advanced earlier
by Stosic et al., [23]. We discover eight distinct com-
munities in both the periods studied. Also, we find
that the community structures change over time and
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Figure 7: Minimum spanning tree from cross-correlations of the cryptocurrencies. Each node number corresponds to the order
of cryptocurrencies listed in Table 2
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exhibit few similarities over the period studied. Un-
like Stosic et al ., [23], we conclude that, over the two
periods, the cryptocurrencies in the communities are
not persistent.

We suspect this could be to do with the changes led
by exogenous effects studied previously by Tan et al
[41]. They use the structural change model to study
the effects of exogenous variables on the market. The
authors use 2 different types of cryptocurrency in-
dices which shows that the changes occur frequently
for the price series followed by changes in return se-
ries, although this is not consistently the case. The
use of 2 cryptocurrency indices may not be useful
to capture the whole market’s movement due to its
fast-changing nature. This is because the cryptocur-
rencies constantly change their ranks based on the
market capitalization. The authors advise financial
researchers to take into account these instabilities of
parameters that may exist in all aspects of the cryp-
tocurrency analysis and modelling process due to the
frequent existence of change points affected by un-
derlying internal or external factors. Our research at-
tempts to capture the underlying interactions within
the market and we need more data of various cryp-
tocurrency indices to capture these exogenous effects
on ranks and market capitalization.

Further work by Sovbetov [42] studies the factors
influencing prices of most common five CC such Bit-
coin, Ethereum, Litecoin, Dash and Monero. First,
they find market beta, trading volume, and volatility
appear to be significant determinant for all five cryp-
tocurrencies both in short and long run. Second, the
trends led by attractiveness have impact on price, but
only in long run. They also examine relation with
S&P500 index and discover it seems to have weak
positive long run impact on Bitcoin, Ethereum and
Litecoin. Similarly, Poyser [43] defines three types of
cryptocurrency influence factors organised into inter-
nal and external factors: Supply and demand being
the major internal factor whereas attractiveness, le-
galization, and some macro-finance factors being the
external factors.

This leads to several questions about these group-
ings such as why do they group? Do they group be-
cause of similar underlying framework? or Do they
group because trading volumes are similar? remain

Figure 8: Minimum spanning tree with distinct communities
for 59 cryptocurrencies for first time window of 150 days. Each
color represent a unique community. (The distances between
nodes are not actual representations from the distance matrix)

a subject of future work. We need more data to con-
firm whether similar cryptocurrencies in communities
persists over a long period.

Furthermore, we study and compare the cross-
correlation dynamics of similar community groupings
from the two periods. We take the cross-correlation
matrices C1 for first time window with L = 150 and
C2 for second time window with L = 150. Next,
we compare their correlation matrices by selecting
communities with similar color groupings from Fig-
ure 8 and Figure 9. By visual inspection, we find
that most communities exhibit a transition from pos-
itive to negative correlation. Particularly, in Figure
10 and Figure 11 negative correlation is dominant in
their second period. Interestingly, we find that for
the community in Figure 12 the positive correlations
are dominant in the next period, suggesting that a
community specific behaviour exists in the market.
Our visual findings are also confirmed by examining
the changes in the largest eigenvalues from both ma-
trices C1 and C2.
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Figure 9: Minimum spanning tree with distinct communities
for 59 cryptocurrencies for second time window of 150 days.
Each color represent a unique community. (The distances be-
tween nodes are not actual representations from the distance
matrix)

5.3. Possible Implications of the Results

These communities can have certain economic im-
plications as using these community groupings can
be useful for constructing diverse investment portfo-
lios. This was previously suggeseted by Mensi et al
[44] who study Bitcoin and five major cryptocurre-
nies (Dash, Ethereum, Litecoin, Monero and Ripple)
and examine their portfolio risk implications. They
consider different portfolio strategies and examine the
implications of diversification. The results show that
use of mixed portfolio strategy provides better diver-
sification and risk reductions for portfolio managers
and investors. Also, the findings show such risk min-
imization is time-horizon dependent which suggests
investors need to be wary of changes in each commu-
nity grouping for different time periods. Although
we would suggest that implications of these changes
remain to be confirmed as part of future work.

Moreover, Zhang et al [45] consider a value-
weighed cryptocurrency index and compare the cross-
correlations with the DJIA index. They find persis-
tent cross-correlation exists between the two. They
use 9 different cryptocurrenies in their analysis and
conclude that all the cryptocurrenies studied are effi-
cient and that further work can be done to study their
changing degree of efficiency and investigate hedging
properties. Zhang et al [46] have studied some styl-
ized facts of 8 different cryptocurrenies which repre-
sents almost 70% cryptocurrency market capitaliza-
tion there exists. Their findings reveal heavy tails
for all the returns of cryptocurrenies, an absence of
autocorrelations, returns of cryptocurrencies display-
ing strong volatility clustering, leverage effects and
long-range dependance for the return of cryptocur-
rencies. The authors suggest investors in cryptocur-
rencies should take into account these stylized facts.
However, the authors must confess an inability to
satisfactorily explain the difference between returns
and volatility in long range dependence in the case of
cryptocurrencies and whether this has to do with the
number of determinants of these for this particular
asset class is an open question.
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Figure 10: cross-correlation matrices C1 and C2 for communities in ’Black’

Figure 11: cross-correlation matrices C1 and C2 for communities in ’Purple’
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Figure 12: cross-correlation matrices C1 and C2 for communities in ’Red’

6. Conclusion

In summary, we study the collective behaviour for
the cryptocurrency market using correlations of 119
and 59 cryptocurrencies. We find and verify that
cross-correlations matrix have non-trivial structures
and groupings among cryptocurrency pairs. Also, we
discover for different numbers of cryptocurrencies and
time periods the eigenvalue spectrum does not always
agree with universal predictions of Random Matrix
Theory.

We analyze the eigenvector components to validate
their influence on the market. Furthermore, we con-
struct minimum spanning trees and discover distinct
community structures. Although, these communi-
ties structures do not persist over time but cross-
correlation dynamics suggests a collective behaviour
exists among these communities. Lastly, we conclude
our analysis of community groupings can be useful to
construct cryptocurrency investment portfolios.
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