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Abstract 

Automated detection of AF from the electrocardiogram (ECG) still remains a challenge. In 

this study we investigated two multivariate based classification techniques, Random Forests 

(𝑅𝐹) and k-nearest neighbor (𝑘 − 𝑛𝑛), for improved automated detection of AF from the 

ECG.  We have compiled a new database from ECG data taken from existing sources. R-R 

intervals were then analyzed using four previously described R-R irregularity measurements: 

(1) The coefficient of sample entropy (𝐶𝑜𝑆𝐸𝑛) (2) The coefficient of variance (𝐶𝑉) (3) Root 

mean square of the successive differences (𝑅𝑀𝑆𝑆𝐷) and (4) median absolute deviation 

(𝑀𝐴𝐷). Using outputs from all four R-R irregularity measurements 𝑅𝐹 and 𝑘 − 𝑛𝑛 models 

were trained. RF classification improved AF detection over 𝐶𝑜𝑆𝐸𝑛 with overall specificity of 

80.1% vs. 98.3% and positive predictive value of 51.8% vs. 92.1% with a reduction in 

sensitivity, 97.6% vs. 92.8%. 𝑘 − 𝑛𝑛 also improved specificity and PPV over 

𝐶𝑜𝑆𝐸𝑛 however the sensitivity of this approach was considerably reduced (68.0%). 

1 Introduction 

The automated detection and management of patients with atrial fibrillation (AF) is becoming 

a priority in healthcare systems globally [1], [2]. Patients suffering from AF have a 5-fold 

increase in the likelihood of suffering a stroke event [3], making early detection and 

intervention a priority. Typically, when patients are suspected of having AF, a 12-lead 

electrocardiogram (ECG) is recorded and this remains the gold standard for AF detection [4]. 

However, some AF patients suffer short and intermittent episodes which are difficult to 

confirm using the 12-lead ECG, given the relatively short duration of the recording (10 

seconds). Patients who are suspected of having AF, which is not confirmed on the 12-lead 

ECG, are usually referred for extended (24-72 hour) ECG monitoring in an effort to detect 

the suspected AF events [4]. This extended continuous monitoring is usually performed using 

a Holter monitoring system although recently a number of new devices have emerged that 
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specifically focus on the detection of AF.  These include disposable patch systems [5] and 

iPhone based ECGs [6]. Due to the extended nature of continuous ECG recordings and the 

amount of associated data generated it becomes more challenging to perform human 

interpretation. Ideally, AF would be automatically detected via a software based algorithm, 

alleviating the need for time consuming manual review of ECGs by clinicians. Accurate 

automated detection of AF from the ECG still remains a challenge due to sustained ectopic 

beats (Figure 1), motion artefact and with some devices, T-wave over sensing [7]. AF is 

confirmed on the ECG as the absence of the P-wave, an irregular R-R interval and in some 

patients a fibrillatory wave on the baseline ECG [8]. Most ambulatory systems rely on the 

analysis of the R-R interval alone for the detection of AF. This is due to the fact that the P-

wave, and, in particular, the fibrillatory wave have a low signal-to-noise ratio during 

ambulation. In this study we aim to determine if the automated detection of AF from R-R 

intervals can be improved with Random Forests (𝑅𝐹) and k-nearest neighbour (𝑘 − 𝑛𝑛) 

classification models. 

 

Figure 1. An example of normal sinus rhythm (top row), atrial fibrillation (middle row) and 

sustained pre-atrial contractions (bottom row). 
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2 Method 

2.1 Study Data 

To facilitate our experiments, we developed a new database from a range of different sources. 

The database structure is outlined in the Table 1. Automated QRS detection was performed 

on lead II using the open source GQRS algorithm [9], this method of QRS detection was 

chosen over the manual human annotations as it allows for the automated detection of QRS 

complex’s, which as described previously is highly desirable. The GQRS detection algorithm 

was chosen based on its improved performance over other available QRS detection 

algorithms [10]. As can be seen in Table 1 the database (𝐴𝐹𝐷𝐵!"#$) contained 322 records 

consisting of a total of 4232410 automatically detected ECG beats of which 17% were 

labeled as AF based on the reference rhythm annotations provided with the existing 

databases. The database also contained a significant number of pre-atrial contractions (4490) 

and pre-ventricular contractions (101213), the main sources of false positives for automated 

AF algorithms [7]. The 322 records were then randomly split into a training dataset of 249 

patients (75%) and a testing dataset of the remaining 73 patients (25%). 

 

Table 1. The number of AF and non AF beats detected using the GQRS algorithm. Also the 

number of PVC and PAC beats within each database taken from provided human beat 

annotations. 
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2.2 R-R interval pre-processing  

A simple three-point median filter was applied to the R-R interval data prior to analysis. This 

filter is commonly implemented in an effort to remove sporadic ectopic beats from the R-R 

series before AF detection is attempted [11]. The filter is defined as below: 

𝑅𝑅!" = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑅𝑅 𝑛 − 2 ,𝑅𝑅 𝑛 − 1 ,𝑅𝑅 𝑛 }    (1) 

Where 𝑅𝑅!" is the output of the median filter and 𝑅𝑅 is the time series of R-R intervals. 

2.3 R-R irregularity measurements 

For this study we implemented four R-R irregularity measurements (1) the coefficient of 

variance (2) the root mean square of the successive differences (3) the coefficient of sample 

entropy and (4) the median absolute deviation. All measurements were implemented with 

moving segment window of 30 R-R intervals. 

2.3.1 The coefficient of variance 

The coefficient of variance (𝐶𝑉) was calculated as follows: 

𝐶𝑉 =  !!!
!!!

      (2) 

Where  𝑅𝑅!  is the standard deviation of the R-R interval and 𝑅𝑅! is the mean R-R interval. 

Episodes of AF are expected to have a greater value of the 𝐶𝑉 than those of NSR [12]. 

2.3.2 The root mean square of the successive differences  

The root mean square of the successive difference (𝑅𝑀𝑆𝑆𝐷) is calculated as follows: 

𝑅𝑀𝑆𝑆𝐷 =  !
!!!

( 𝑅𝑅 !!! − 𝑅𝑅 !)!!!!
!!!     (3) 

Where i is the R-R interval and N is the length of the segment window. Since AF exhibits 

higher variability in the R-R interval than NSR, the 𝑅𝑀𝑆𝑆𝐷 is expected to be higher during 

AF than NSR [13] . 
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2.3.3 The coefficient of sample entropy 

The coefficient of sample entropy (𝐶𝑜𝑆𝐸𝑛) was first described by Lake and Moorman and is 

based on the concept of sample entropy [14] which is calculated as follows: 

𝑆𝑎𝑚𝑝𝐸𝑛 = − ln 𝑐𝑝 = − ln !
!
= − ln 𝐴 + ln(𝐵)   (4) 

Where 𝐴 is the number of matches at 𝑚 and 𝐵 is the number of matches at 𝑚 + 1, within a 

tolerance of 𝑟. The coefficient of sample entropy [15] is the natural negative logarithm of the 

conditional probability that R-R intervals that match at length 𝑚 will matches at length 

𝑚 + 1. 

𝐶𝑜𝑆𝐸𝑛 = 𝑆𝑎𝑚𝑝𝐸𝑛 + ln 2𝑟 − ln(𝑚𝑒𝑎𝑛 𝑅𝑅 )    (5) 

The 𝐶𝑜𝑆𝐸𝑛 is expected to be greater during AF than normal sinus rhythm (NSR), again due 

to the irregularity of the R-R interval during AF episodes. 

2.3.4 The median absolute deviation 

The median absolute deviation (𝑀𝐴𝐷) was popularized by Hampel who attributed its 

discovery to Gauss [16]. 𝑀𝐴𝐷 is a robust measurement of the variability in a numerical 

series of data. MAD is calculated as follow: 

𝑀𝐴𝐷 =  𝑚𝑒𝑑𝑖𝑎𝑛( 𝑅𝑅! −𝑚𝑒𝑑𝑖𝑎𝑛 𝑅𝑅!"# )    (6)  

 

Where 𝑅𝑅! is the R-R interval and 𝑅𝑅!"# is all the R-R intervals within the segment window. 

The R-R intervals during an episode of AF have a larger variability therefore AF is expected 

to have a greater value of 𝑀𝐴𝐷 than NSR [17]. 

2.4 Multivariate based classification methods 

For this study we focused on two main classification methods, 𝑅𝐹 and 𝑘 − 𝑛𝑛. Both 

supervised machine learning models were trained using the four R-R irregularity 

measurements as input features and the human rhythm annotations used as an output 
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reference. These classification approaches were chosen in an effort to incorporate the best 

aspects of the existing algorithms in a way that allows for better discrimination between NSR 

and AF. 

2.4.1 Random Forests  

𝑅𝐹 is an ensemble machine learning method for classification, in this case classifying rhythm 

as either NSR or AF.  𝑅𝐹 creates many classification trees from subsets of the data created 

using the bootstrap method with replacement. To determine the optimal number of trees to 

grow for the RF classifier the out-of-bag classification error was calculated over a number of 

investigated forests sizes. The optimal number of trees grown was found to be 30. 

2.4.2 K Nearest Neighbour 

𝑘 − 𝑛𝑛 is a method of pattern recognition whereby new R-R intervals are classified as NSR 

or AF based on the majority vote of the number of closest surrounding neighbors in feature 

space. A standard 10-fold cross validation was performed on the training dataset to determine 

an optimal value for 𝑘, which in this case was 17. 

2.5 Statistical Analysis 

2.5.1 Algorithm Training 

For all four implemented R-R irregularity measurement receiver operating characteristic 

(𝑅𝑂𝐶) curves were created and the area under the 𝑅𝑂𝐶 curve (𝐴𝑈𝐶) calculated. From each 

𝑅𝑂𝐶 curve the optimal detection thresholds were defined as the minimum Euclidean distance 

from perfect classification. Defined thresholds were then taken and applied to the testing 

dataset. 

2.5.2 Algorithm Testing 

The performance on the four R-R irregularity measurement and two classification models 

were assessed using overall beat-by-beat sensitivity, specificity and positive predictive value 

(PPV). As well as this individual beat-by-beat accuracy was calculated and confidence 
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intervals created using bootstrap with replacement over 1000 bootstrap trials. Finally, 

significant differences in accuracy calculations across all six detection approaches on the 

testing dataset were determined using the Wilcoxon signed rank test (𝛼 = 0.05). 

2.6 Results 

2.6.1 Algorithm Training 

When assessing the performance of the four R-R irregularity measurements on the 249 

patients of the 𝐴𝐹𝐷𝐵!"#$ training dataset (results presented in Table 2), 𝐶𝑜𝑆𝐸𝑛 performed 

best with AUC of 0.92 followed by RMSSD with AUC of 0.91. The ROC plots shown in 

Figure 2 are provided to allow comparison between the four different automated AF detectors 

on the 𝐴𝐹𝐷𝐵!"#$ and 𝑀𝐼𝑇 − 𝐵𝐼𝐻 𝐴𝐹𝐷𝐵. Outputs of each R-R irregularity measurement 

were then used as input features to develop the 𝑅𝐹 and 𝑘 − 𝑛𝑛 classification models. Optimal 

detection thresholds were chosen from the ROC plot of the 𝐴𝐹𝐷𝐵!"#$ (Figure 2a) and 

defined as the minimum Euclidean distance from perfect classification. 
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Figure 2. ROC curves for AF detection for the four implemented R-R irregularity 

measurement on (a) 𝐴𝐹𝐷𝐵!"#$ training set and the (b) 𝑀𝐼𝑇 − 𝐵𝐼𝐻 𝐴𝐹𝐷𝐵. Where (o) is the 

optimal detection thresholds. 
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Table 2. Area under the ROC curve values for the 𝑀𝐼𝑇 − 𝐵𝐼𝐻 𝐴𝐹𝐷𝐵 and the 𝐴𝐹𝐷𝐵!"#$ 

training dataset used in this study. The performance of the 𝐶𝑜𝑆𝐸𝑛 and 𝑀𝐴𝐷 algorithms are 

reduced on the 𝐴𝐹𝐷𝐵!"#$ dataset compared to the 𝑀𝐼𝑇 − 𝐵𝐼𝐻 𝐴𝐹𝐷𝐵. 

 

2.6.2 Algorithm and Classification Model Testing 

From the 73 patients of the 𝐴𝐹𝐷𝐵!"#$ testing dataset (results presented in Table 3), RF 

classification improved AF detection over 𝐶𝑜𝑆𝐸𝑛 with overall specificity of 80.1% vs. 98.3% 

and positive predictive value of 51.8% vs. 92.1% with a reduction in sensitivity, 97.6% vs. 

92.8%. 𝑘 − 𝑛𝑛 also improved specificity and PPV over 𝐶𝑜𝑆𝐸𝑛 however the sensitivity of this 

approach was considerably reduced (68.0%). When assessing R-R irregularity approach’s 

individually (Figure 3), the 𝐶𝑜𝑆𝐸𝑛 provided the best AF detection accuracy compared to the 

next best algorithm 𝑅𝑀𝑆𝑆𝐷 (median accuracy, 96.9% vs. 92.7%, p < 0.001).  

 

Figure 3. The individual accuracy of the six investigated detection algorithms. The RF model 

improved the median accuracy but the difference is very small however the 5% and 95% 

bootstrap confidence intervals are much smaller for 𝑅𝐹. 
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The individual patient accuracy calculations, shown in Figure 3, demonstrated a small 

improvement in median accuracy for AF detection from 𝑅𝐹 of 99.1% compared to 96.9% 

achieved by 𝐶𝑜𝑆𝐸𝑛. Also of interest from these results is the clear reduction in bootstrap 

confidence intervals. To determine the performance of the AF algorithms on recordings 

containing ectopic beats, records from the testing dataset containing PVCs and PACs were 

isolated and median AF detection accuracy calculated to establish performance.  

As shown in Table 4, the 𝑅𝐹 model appeared to be more effective on both records with a 

PVCs with median accuracy of 98.6% compared to 85.7% achieved by 𝐶𝑜𝑆𝐸𝑛. Also was true 

with the records containing PACs with median accuracy of 99.1% compared to 94.0% 

achieved by CoSEn. Although there are a limited number of recordings containing annotated 

PVCs and PACs in the testing dataset of this study, results from these isolated records appear 

to indicate the RF model is more effective in reducing false positives due to ectopic beats. 

However further investigation is required. 

 

Table 4. The median accuracy of 𝐶𝑜𝑆𝐸𝑛 and 𝑅𝐹 algorithm on recordings containing 

annotated PVCs and PACs, the two major sources of false positives from AF algorithms, 

from the testing database. 

 

2.7 Discussion 

Recently a number of studies have demonstrated improvement performance of automated AF 

detection on the MIT-BIH AFDB [13], [18]–[20] . As highlighted in Figure 2, new databases 

should be explored in order to develop more robust methods of automated AF detection. The 

MIT-BIH database is commonly used for reporting new algorithm performance and remains 
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the most used database for algorithm testing and comparison. In this study we assembled a 

large database which may be more appropriate for automated AF algorithm training and 

testing. Performance of algorithm training on the training dataset is compared to the MIT-

BIH database in Figure 2. The performance of CoSEn and MAD were significantly reduced 

when employing 𝐴𝐹𝐷𝐵!"#! during development in comparison to 𝑀𝐼𝑇 − 𝐵𝐼𝐻 𝐴𝐹𝐷𝐵. This 

in turn highlights that results obtained using the 𝑀𝐼𝑇 − 𝐵𝐼𝐻 𝐴𝐹𝐷𝐵 may be optimistic and 

not truly representative.  During algorithm testing, the best performing R-R irregularity 

method for diagnosing AF was the 𝐶𝑜𝑆𝐸𝑛, which provided a significant improvement in 

median accuracy over the next best method the 𝑅𝑀𝑆𝑆𝐷. This observation falls in line with 

the work described by Langley et al. [21] who demonstrated the improved accuracy of 

𝐶𝑜𝑆𝐸𝑛 over CV and RMSSD for short R-R interval recordings. When Moorman and Lake 

first described the principle of the CoSEn [14] they also demonstrated its improved 

performance over CV in classifying AF from NSR. Petrenas et al. [22] investigated the 

performance of 𝐶𝑜𝑆𝐸𝑛 for AF detection from the R-R interval and found that for small 

segment window lengths (<30 beats) the sensitivity, specificity and accuracy of AF detection 

was significantly reduced in recordings with high signal noise, also the authors demonstrated 

a reduction in the performance of 𝐶𝑜𝑆𝐸𝑛 during PACs confirming observations made in [7]. 

The 𝑅𝐹 model described in this study improved the median accuracy over 𝐶𝑜𝑆𝐸𝑛 (99.1% vs. 

96.9%, 𝑝 < 0.001).  Also, as shown in Table 4, the RF model provides improved accuracy 

from records containing PVCs and PACs. However, due to further testing of the developed 

classification models is required to effectively establish their performance in the presence of 

PVCs and PACs.  This is important to note as PVCs and PACs occur frequently with the 

prevalence increasing with age [23] and are a major source of false positives from automated 

AF algorithms.  



 13 

This study describes an improvement in the performance of automated AF detection 

algorithms that are based on R-R interval based detection methods, through implementation 

of a RF classification model. R-R interval irregularity is the most accessible ECG 

characteristic for AF detection [8].  It must be appreciated though that the R-R interval based 

approach does have limitations and these are rooted in the that features which are specific to 

the function of the atria such as P-wave analysis, the P-R interval or fibrillatory wave are not 

accounted for. However, analysis of these features is not without issue as they may be 

difficult to accurately record during ambulation due to the relatively low magnitude of the P-

wave and fibrillatory wave on the ECG [24], [25]. 

2.8 Conclusions 

Of conventional approaches the 𝐶𝑜𝑆𝐸𝑛 performed better than 𝐶𝑉, 𝑅𝑀𝑆𝑆𝐷 and 𝑀𝐴𝐷 in AF 

detection from the 𝐴𝐹𝐷𝐵!"#$ database. The 𝑘 − 𝑛𝑛 classification model improved 

specificity and PPV value over 𝐶𝑜𝑆𝐸𝑛 but with a substantial cost in sensitivity. The 𝑅𝐹 

classification model also improved specificity and PPV with a smaller reduction in 

sensitivity. 
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