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Rapid urbanization has brought about an in°ux of people to cities, tipping the scale between

urban and rural living. Population predictions estimate that 64% of the global population will

reside in cities by 2050. To meet the growing resource needs, improve management, reduce

complexities, and eliminate unnecessary costs while enhancing the quality of life of citizens,
cities are increasingly exploring open innovation frameworks and smart city initiatives that

target priority areas including transportation, sustainability, and security. The size and het-

erogeneity of urban centers impede progress of technological innovations for smart cities. We

propose a Smart Stadium as a living laboratory to balance both size and heterogeneity so that
smart city solutions and Internet of Things (IoT) technologies may be deployed and tested

within an environment small enough to practically trial but large and diverse enough to eval-

uate scalability and e±cacy. The Smart Stadium for Smarter Living initiative brings together
multiple institutions and partners including Arizona State University (ASU), Dublin City

University (DCU), Intel Corporation, and Gaelic Athletic Association (GAA), to turn ASU's

Sun Devil Stadium and Ireland's Croke Park Stadium into twinned smart stadia to investigate

IoT and smart city technologies and applications.
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1. Introduction

People increasingly moving to urban centers is shifting the balance between rural and

city life. This phenomenon of rapid urbanization has brought about signi¯cant

changes in where the global population resides: 54% of the global population was in

urban in 2014, and by 2050, estimates predict that 64% of the global population will

be urban [41]. Rapid urbanization is exacerbating existing concerns of congestion,

pollution, accidents, security, and sustainability. For example, it is estimated that by

2050, the number of vehicles on the road will double to 2:5 billion. In 2013, the U.S.

spent $124 billion due to tra±c congestion, and estimates predict that by 2030, this

number will rise to $186 billion with accompanying increases in `̀ social costs" [59]. By

2020, $13 billion and 1;600 premature deaths are anticipated in costs due to exposure

to emissions from idling vehicles during tra±c jams. Tra±c congestion problems are

a worldwide issue; as of 2014, the top 10 most congested cities [59] include Istanbul,

Mexico City, Rio de Janeiro, Moscow, Salvadore, Recife, St. Petersburg, Bucharest,

Warsaw, and Los Angeles.

Cities are seeking ways to reduce complexity and costs, provide better manage-

ment, and meet resource needs, while ensuring a high quality of life for its citizens.

Many cities have begun to explore open innovation frameworks and smart city

initiatives to address the needs of their growing populaces by targeting key priority

areas of health, wellness, transportation, safety, security, sustainability, and citizen

engagement. Cities that perform well and excel will °ourish through the creation of

wealth and rises in productivity, paving the way for continued growth and long-term

success [29]. Smart city transformations rely upon not only technological and policy-

based advancements, but re-imagining traditional approaches to key priority areas,

and preparing for scalability challenges due to a city's sheer size and heterogeneity.

We propose the use of a Smart Stadium as a living laboratory to more easily deploy

and evaluate Internet of Things (IoT) technologies and smart city solutions

by balancing the size and heterogeneity of a smart environment that is small enough

to practically trial but large and complex enough to evaluate e®ectiveness and

scalability.

Smart Stadium for Smart Living is an initiative developed to join institutions and

partners interested in IoT and smart city technologies. The initiative joins Arizona

State University (ASU) in Tempe, Arizona; Dublin City University (DCU) in

Dublin, Ireland; Gaelic Athletic Association (GAA) of Ireland; and Intel Corpora-

tion to turn two stadia ��� ASU's Sun Devil Stadium and Ireland's Croke Park

Stadium ��� into twinned smart stadia with the potential to be world class testbeds

for exploring smart city applications and IoT solutions. The projects of this initiative

thus far focus on two broad application areas: (i) Enriching the fan/attendee expe-

rience; and (ii) Enhancing stadium operation. While the application focus of these
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projects is set in the context of the stadium and stadium-related events, they are

relevant to wider smart city application areas. The full scope of projects within this

initiative addresses issues of crowd management, fan engagement, event logistics,

stadium management, and environmental monitoring, using a variety of deployed

sensors such as video cameras and microphones. Given the sheer number of projects

within this initiative, the following discussion pertains only to projects targeting

enriching the fan experience.

Projects to enrich a fan's experience were identi¯ed by considering the entire

`journey' of an event attendee; that is, not only his or her interactions, behaviors, and

actions within the stadium, but all activities involved to attend an event. For ex-

ample, a fan's journey may include extensive preparation, perhaps months prior, to

attend an upcoming event; planning and coordination to travel to and from the

stadium; their involvement on social media leading up to an event as well as during

and after an event itself; and activities carrying over to relevant events and gath-

erings happening before, during, and after the stadium event itself. This work pre-

sents three fan-focused projects targeting e±ciency/convenience, safety, and

engagement. These projects include: (i) Crowd Understanding: Improved safety via

vision-based and non-vision-based crowd behavior understanding and analytics; (ii)

Athletic Demonstrator Platform: Interactive serious gaming stations to support fan

engagement while promoting motor learning and athletic training; and (iii) Wait

Time and Queue Estimation: Real-time, accurate access via a mobile app to wait

time estimates of lines across a stadium's concession stands, souvenir stands, and

restrooms.

1.1. Organization and research contributions

The rest of this paper is organized as follows: Section 2 discusses the Crowd Un-

derstanding project. We present an e±cient strategy to compute low dimensional,

informative features for crowd behavior understanding and anomaly detection.

The Athletic Demonstrator Platform project, outlined in Sec. 3, is a motor

learning environment enabling real-time motion capture, analysis, and feedback.

The main contributions of this work include: (1) A fusion approach for low-cost

Kinect-IMU motion capture and algorithms for calibration, phase detection, and

analysis; and (2) Insight into important research questions pertaining to the de-

sign of multimodal feedback including (i) What categories of performance are

present in real motor training feedback from a trainer to a subject, and through

which modalities do these interactions occur? (ii) How can a system observe these

metrics of performance in an individual's motion? and (iii) Does individual pref-

erence play a role in the assignment of modalities to feedback in a multimodal

environment?

Section 4 presents the Wait Time and Queue Estimation project. Our research

contributions in this project include: ð1Þ A novel active learning framework to

identify the salient and exemplar instances from large amounts of unlabeled data to
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train an object counting model and ð2Þ Incorporating only binary (yes/no) feedback

into the algorithm in order to reduce the labeling burden on the user.

Finally, we conclude with discussions in Sec. 5.

2. Crowd Understanding

Sports Stadiums are multi-purpose venues within our cities where thousands gather

for events including sporting contests, music concerts as well as business and aca-

demic conferences. However, with such large gatherings of people there are signi¯-

cant risks to public safety which must be addressed. Improving our understanding of

the behavior of such large crowds of people within a stadium can help maintain safety

and security for all involved. Early detection and a rapid response time are essential

in any emergency situation, especially in a highly congested public space such as a

stadium. To address this issue, we have developed an e±cient computer vision al-

gorithm for detecting unusual crowd behavior in real-time on a commodity CPU.

Both Sun Devil Stadium (56,200 capacity) and Croke Park Stadium (82,300 ca-

pacity) have been fully designed to ensure the safety of all visitors, but the Smart

Stadium project aims to exploit visual and non-visual sensor data to gain additional

insight into the dynamics of crowds which will help improve the already excellent

safety standards.

The crowd understanding project uses existing CCTV camera footage from Croke

Park Stadium to extract scene-level holistic features and detect unusual crowd be-

havior at the frame level. Long-term, the system aims to learn a `̀ steady state" of

what normal crowd behavior patterns look like across numerous cameras within a

stadium, and therefore, be able to determine when crowds don't behave according to

expected patterns, and alert support sta®.

2.1. Crowd understanding implementation

The objective is to design a low dimensional set of features that are quick to compute

and capture su±cient holistic information about objects moving in a scene to allow

straightforward discrimination between normal and abnormal events. The developed

technique for crowd behavior anomaly detection uses a set of e±ciently computed,

easily interpretable, scene-level holistic features [40]. These features are calculated by

analyzing local motion patterns across a crowded scene. This low-dimensional de-

scriptor combines two features from the literature: crowd collectiveness [52] and

crowd con°ict [27], with two newly developed features: mean motion speed and a

unique formulation of crowd density [40].

Crowd collectiveness is a scene-independent holistic property of a crowd system,

which can be de¯ned as the degree to which individuals in a scene move in unison

[52]. Zhou et al.'s [52] method for measuring this property analyzes the tracklet

positions and velocities found in the current frame and constructs a weighted ad-

jacency matrix. The edge weights within each matrix column are summed and the
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mean is calculated. This mean value corresponds to the overall collectiveness level for

the current frame.

Crowd con°ict is another scene-independent holistic crowd property, which can

be de¯ned as the level of friction/interaction between neighboring tracked points

[52]. Shao et al. [52] e±ciently calculate this property by summing the velocity

correlation between each pair of neighboring tracked points in a given frame.

Crowd density can be de¯ned as the level of congestion observed across a scene at

a given instant. The proposed approach to calculating this feature ¯rstly divides the

scene into a ¯xed size grid (10� 10) and counts the number of grid cells currently

occupied by one or more tracked points. Equation (1) is then used to calculate the

crowd density level for the current frame. A 10� 10 grid was chosen to provide

su±cient granularity in the density calculation, with the aim being for each grid cell

to roughly contain one or two pedestrians in most surveillance scenarios. There are

obvious limitations in terms of scale invariance with this feature, however the main

objective is not pixel perfect accuracy but to measure a useful crowd property in a

highly e±cient manner.

CrowdDensity ¼ Occupied Grid Cells

Total Grid Cells
ð1Þ

Figure 1 depicts the proposed crowd density feature calculated using footage from

a CCTV camera covering a concession area at Croke Park Stadium during a busy

match. As shown, the density level increases signi¯cantly once the gates open (yel-

low), fall once the match begins (green), and then spike again at half time (red).

The heat map in Fig. 1 is taken from a video animation that illustrates how the

density level at various stadium locations changes over time. This was produced by

calculating the density level over a full match day for each camera location and

updating the color for each section to correspond to the density level [0.0–1.0] at that

time point. Using this method, the distribution of people throughout a stadium over

the course of a match day can be visualized. The visualization can also be sped up to

show the changes the take place over hours in a matter of minutes. Figure 2 shows

this feature being calculated on an image from the UMN dataset.

The mean motion speed observed within a crowded scene provides a coarse, scene-

level feature that can be extracted very e±ciently. Our approach estimates this

crowd property by calculating the magnitude of each tracklet velocity vector in

the current frame and ¯nding the mean. While conceptually simple, experiments

show that the inclusion of this feature noticeably improves the accuracy of crowd

behavior anomaly detection. Each of these features captures a distinct aspect of

crowd behavior.

Our holistic features are extracted for each frame in a given video sequence using

the following steps. Firstly, the scene foreground is segmented using the Gaussian-

mixture based method of KaewTraKulPong and Bowden [33] before interest points

are tracked using a KLT tracker [58]. These local trajectories or tracklets are then

analyzed to calculate four holistic features for each frame. This high-level descriptor
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Fig. 1. (Color online) Top: Changes in crowd density calculated for a concession stand during a busy

match day at Croke Park Stadium. Bottom: A heat map visualization showing di®erences in crowd density

at di®erent stadium locations within Croke Park.

Fig. 2. Crowd density calculation grid for a scene from the violent-°ows dataset. Each green square

corresponds to an occupied grid cell (crowd density in this frame ¼ 57%).
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of crowd behavior can be computed in real-time (30þ frames per second) even on

commodity hardware (e.g., an Intel i5 CPU).

Anomalous crowd behavior then needs to be detected using this crowd behavior

descriptor. We investigate two anomaly detection approaches, covering two possible

situations: ð1Þ When only `̀ Normal" behavior training data is available; and ð2Þ
when both `̀ Normal" and `̀ Abnormal" behavior training data are available. Each

require the following pre-processing steps: All individual features are ¯rstly scaled to

lie within the range ½0; 1�, with respect to the range of training data values. Nor-

malization is then performed by dividing by the maximum magnitude vector in the

training set. The low-dimensional descriptor used results in almost negligible training

and classi¯cation times for reasonably sized datasets.

We use a Gaussian Mixture Model (GMM) to perform outlier detection when only

normal behavior training data is available. The GMM con¯guration (number of

mixture components and type of co-variance matrix) for a given experiment is se-

lected as the one that minimizes the Bayesian Information Criterion (BIC) value [48]

on the training data. The selected model is then used to calculate the log probabilities

for the full set of training frames, and the distribution of these log probability values

is used to decide upon an outlier detection threshold using Otsu's method [43]. Test

frames are then classi¯ed as abnormal or normal by using the ¯t mixture model to

calculate their log probability and applying the adaptive threshold generated from

the training data.

We use a discriminative model (binary classi¯er) for outlier detection when

both normal and abnormal training data are available. Speci¯cally, we trained a

Support Vector Machine (SVM) with an RBF kernel on test frames labeled as

normal and abnormal. The default value of 1.0 was used for the SVM regularization

parameter C .

2.2. Crowd understanding results

The proposed method is evaluated on two distinct crowd behavior anomaly datasets:

(i) the UMN dataseta; and (ii) the violent-°ows dataset [27]. These benchmarks

assess the ability of a given approach to detect unusual crowd behavior at the frame-

level and video-level, respectively. All experiments were carried out using MATLAB

2014a and Python 2.7 on a 2.8GHz Intel Core i5 processor with 8GB of RAM.

The UMN dataset contains 11 sequences ¯lmed in 3 di®erent locations. Each

sequence begins with a period of normal passive behavior before a panic event/

anomaly occurs toward the end. The objective here is to train a classi¯er using frames

from the initial normal period and evaluate its detection performance on the sub-

sequent test frames. Classi¯cation is performed at the frame level and results are

compared in terms of the receiver operating characteristic (ROC) curve's area under

the curve (AUC). For each of the three scenes, the initial 200 frames of each clip are

combined to form a training set, with the remaining frames used as a test set for that

ahttp://mha.cs.umn.edu/Movies/Crowd-Activity-All.avi.
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scene. This results in a roughly 1:2 split between training and test frames for each

camera location and will be referred to as the single scene experiment. While this

dataset is quite limited in terms of size and variation, it does provide a good means of

performance evaluation during the development of a crowd anomaly detection al-

gorithm. Since no abnormal frames are made available for training in this experi-

ment, the GMM-based detection approach is used. Table 1 presents the BIC values

calculated during the GMM selection stage, with a 3-component model ultimately

used. A full co-variance matrix GMM resulted in a lower BIC value in all cases and

was therefore used. Figure 3 presents the ROC curves for all three UMN scenes

individually. A cross-scene anomaly detection approach is also taken, where for a

Table 1. BIC values calculated dur-

ing the GMM selection stage for the

UMN dataset.

No. of mixture components BIC

1 �20015

2 �21810

3 −22047
4 �21940

Fig. 3. Receiver operating characteristic (ROC) curve and associated area under the curve (AUC) for

each UMN scene.
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given UMN scene, the training frames from the two other scenes are used to generate

the GMM.

Table 2 compares the two variants of the proposed method with the leading

approaches in terms of AUC and processing frame rate. The proposed approach

achieves competitive classi¯cation performance with the state-of-the-art at just a

fraction of the computational cost. The cross-scene experiment, while inferior in

terms of classi¯cation performance, is noteworthy in that each scene was classi¯ed

using training data only from other surveillance scenarios.

The violent-°ows dataset contains 246 clips containing violent (abnormal) and

non-violent crowd behavior. Classi¯cation is performed at the video level. A 5-fold

cross validation evaluation approach is taken and results are compared in terms of

mean accuracy. As both normal and abnormal training examples are available in this

dataset, the proposed SVM-based classi¯cation approach is used. The majority

classi¯cation found among the frames of a given clip is used as the overall result for

that clip. An alternate approach is also taken where only the normal training

examples are used, and the proposed GMM-based outlier detection approach is

taken.

Table 3 presents the BIC values calculated during the GMM selection stage, with

a 4-component model ultimately used. A full co-variance matrix GMM resulted in a

lower BIC value in all cases and was therefore used. For this GMM-based approach

the histogram of frame log probabilities for a given test clip is generated and the

mode value is used to classify the overall clip by applying the Otsu threshold gen-

erated from the training data. Table 4 compares the two variations of the proposed

technique with the leading approaches in terms of mean accuracy and processing

Table 3. BIC values calculated during

the GMM selection stage for the violent-
°ows dataset.

No. of mixture components BIC

1 �51758

2 �223161

3 �274742
4 −327545

Table 2. ROC curve AUC performance and processing

speed on the UMN dataset.

Method AUC Speed (FPS)

MDT 0.995 0.9
CM 0.98 5

SFM 0.97 3

Proposed Method (Single Scene) 0.929 40

Proposed Method (Cross-Scene) 0.869 40
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frame rate. Table 5 highlights the contribution of each feature towards the achieved

anomaly detection accuracy on the violent-°ows dataset using the SVM-based var-

iant. As shown, leaving out any individual feature results in a noticeable decrease in

anomaly detection accuracy.

The SVM-based variant achieves state-of-the-art performance on the violent-

°ows dataset with a mean accuracy of 85:53� 0:17%. The GMM-based variant

achieves a very respectable 65:8� 0:15% accuracy, which is particularly impressive

considering only half the training data, containing no violent behavior, is used in this

case. The approach also achieves noticeably faster computational performance.

The proposed scene-level holistic features are easily interpretable, sensitive to

abnormal crowd behavior, and can be computed in better than real-time (40 frames

per second) on commodity hardware. The approach was demonstrated to improve

upon the state-of-the-art classi¯cation performance on the violent-°ows dataset.

Future work will attempt to improve upon certain limitations of the approach such

as the scale issues present in the crowd density feature, possibly using an adaptive

grid cell size. Moreover, this descriptor will be used to label speci¯c crowd behavior

concepts in larger and more challenging datasets.

3. Athletic Demonstrator Platform

Modern technology has made motion sensing more accessible and prevalent than

ever before, with the rise of low-cost motion-sensing hardware such as Microsoft's

Kinect camera. Similarly, multimodal feedback has become increasingly ubiquitous

through the introduction of haptic, visual, and audio feedback mechanisms in phones

Table 5. The contribution of each feature toward mean

detection accuracy on the violent-°ows dataset using

proposed SVM-based detection approach.

Feature Accuracy when excluded (%)

Crowd Collectiveness 75.2

Crowd Con°ict 65.5

Crowd Density 63.5
Mean Motion Speed 81.2

Table 4. Mean accuracy and processing speed on the

violent-°ows dataset.

Method Accuracy (%) Speed (FPS)

SD 85.4 N/A
HOT 82.3 N/A

ViF 81.3 30

CM 81.5 5

Proposed Method (SVM) 85.53 40
Proposed Method (GMM) 65.8 40
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and game controllers, among other devices. Thanks to this evolution of technology,

motor training is now more accessible to the everyday user, leading to a surge in

studies on motor learning in Human-Computer Interaction (HCI). With modern

technology, an automated system is capable of observing and reacting to a great deal

of information pertaining to a user's motion, and with the inclusion of expert data,

the system can evaluate and provide feedback on this motion in real-time, leading to

a new wave of `̀ unsupervised" motor training wherein an individual interacts with a

system, rather than a real trainer, to gain pro¯ciency in motor skills. This type of

training has a variety of applications ranging from rehabilitation [54] to sports

training [63]. This technology solves a critical problem in the ¯eld: a user must

regularly perform and receive feedback on a motor task to improve at that task at a

steady rate [11], but since trainer availability is limited, user compliance with this

training can stagnate over time [46].

To provide the type of feedback on motor performance that a user can consider

useful in comparison to a real trainer, an automated system should perform the

following tasks: (i) The system should accurately capture a user's motion using

commonly accessible technology (without the complex setup typically encountered

in a laboratory or clinical environment); (ii) The system should automatically rec-

ognize, classify, and represent the various segments and elements of a motion; (iii)

The system should be able to accurately interpret motion data to form an assessment

of a user's performance; and (iv) The system should provide feedback on this as-

sessment that is understandable and meaningful to the user so that the user can

improve his or her motion in the next attempt.

Various aspects of the motion itself should also be considered in the provision of

real-time feedback including the type of motion (rehabilitation vs. sports, for ex-

ample), the user's pro¯ciency level and previous experience, the complexity of the

motion task (typically determined by observing the number of limbs involved in the

motion), the type of information observed (spatial and temporal aspects of the

motion), the assignment of modalities to di®erent aspects of feedback, and the timing

of feedback (for example, concurrent vs. terminal), among others.

Here we present a platform for the provision of automated multimodal feedback

for motor performance in a variety of motor training scenarios. The proposed Ath-

letic Demonstrator Platform implements real-time motion analysis and feedback to

facilitate a motor learning environment that is both useful and stimulating to enrich

fan engagement, excitement, and competitiveness. As part of future work, the

platform has potential for athlete training.

3.1. Related work in motion capture

The ¯eld of Motion Capture, or `̀ MoCap", is a widely studied area in which various

techniques and methods have been applied toward the quanti¯cation and digital

representation of a human's motion in an automated system [60]. Perhaps the most

cutting-edge system to date for this task is the Vicon system, which uses accurate
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and high-quality tracking of worn body markers to record and analyze complex

motion. However, this system is expensive and often restricted to laboratory envir-

onments or professional motion capture scenarios due to its complexity, making it

impractical for the typical user. As a result, cost-e±ciency has become a recent

concern in the ¯eld, leading to the rise of more a®ordable alternative systems [21, 19]

which rely on computer vision [61] and depth-sensing [20, 62] to form lower-quality

estimates of a user's body orientation and joint movement during a motion. Inevi-

tably, these mechanisms are subject to the errors caused by occlusion of body parts

and other issues relating to static camera sensing.

In addition to camera-based techniques, some wearable alternatives to Vicon

exist for motion capture. One popular alternative is Inertial Measurement Units

(IMUs), body-worn 3D motion sensors which o®er an accuracy that can compete

with the gold standard [2, 36]. One example of IMU application in MoCap is the

XSens system [47]. These systems have seen limited success in practice due to the

accumulation of calculation errors which a®ect the accuracy of their measurements

over a time period. Furthermore, if only IMUs are used to handle motion capture, a

signi¯cant amount would be needed to cover all body motion, which can be very

costly. To address this issue, we can take a hybrid approach, which utilizes both

worn IMUs and Kinect depth camera sensing, and fuses the readings from these two

devices [18, 17] to correct for the accuracy errors of one while solving the occlusion

issue of the other.

In previous work [3], we have shown that the hybrid approach, in combination of

2–3 IMU sensors with real-time joint-tracking camera data and the implementation

of advanced algorithms for calibration, phase detection, and analysis, can provide a

low-cost yet accurate mechanism for capture of motor activity. Here we discuss the

design of a platform that utilizes the fusion approach, along with multimodal feed-

back in its ¯nal design, to provide learning interaction for motion of any type,

depending on the location of IMU sensors worn on the body.

3.2. Athletic demonstrator platform implementation

The athletic demonstrator platform utilizes a combination of two IMU sensors

(currently wrist-worn, but can be recon¯gured), the Microsoft Kinect V2 depth

camera for joint tracking, and the Unity engine for multi-platform game develop-

ment, as its core components. Each IMU sensor communicates with a central com-

puter running the platform's software over a Bluetooth connection at 256 Hz and

includes accelerometer and gyroscope output for position and orientation. The sys-

tem ¯rst calibrates the sensing by requiring the user to stand in a `̀ T-pose", thus

synchronizing the IMU sensors to the Kinect's coordinate space. After this, the

skeletal tracking of the Kinect is fused with the readouts of the IMU sensors to

determine accurate joint positioning based on techniques shown in [18, 17, 3]. The

joint data tracked by movement of the worn IMUs are utilized to determine the

position and orientation of those joints, while the Kinect's data is utilized to
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determine the position and orientation of all other joints during a motion. This fusion

technique is shown in Fig. 4.

To learn a motion in the current design of the platform, the user ¯rst views a

demonstration of the motion by an expert through an on-screen video, which is

accompanied by both an avatar representation of the fused Kinect/IMU data and a

graph which depicts 3D IMU accelerometer information over time. Having viewed

this demonstration, the user is then asked to attempt the motion under the same

interface, with a 3D virtual avatar mirroring the user's motion as a form of con-

current visual feedback. Mechanisms are also in place for the provision of haptic

feedback and audio cues at key points during this motion attempt, although the

concurrent feedback used is purely visual in the initial prototype shown in Fig. 5.

Fig. 4. Proposed low-cost Kinect-IMU motion capture fusion approach. Left: Demonstration of Kinect

skeletal tracking. Right: Calibration phase and fusion of Kinect and IMU data.

Fig. 5. Athletic Demonstrator Platform. Left: Live demonstration of the platform for the Irish sport of

hurling. Right: Gami¯ed score feedback based on expert player with top ten scoreboard to promote

competitiveness.
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Once the user completes an attempt of the motion, he or she is then provided

terminal feedback on performance using a scoring system that depicts the proximity

of the user's motion, captured with both the IMU sensors and Kinect camera, to the

motion sample provided by the expert. This scoring is accompanied by feedback on

the user's speed, specifying whether the user should slow down or speed up the rate of

motion on the next attempt. This terminal feedback provides an overview of the

individual's performance for a single attempt; after several attempts, the user is given

an overall score for the motion as a ¯nal measure of his or her current performance.

This overall score is submitted to a leaderboard indicating the best performances on

that motion, which can be used either by a single user to determine how his or her

performance is progressing over time, or by multiple users to compare their perfor-

mances on the same task.

3.3. Athletic demonstrator platform: Related studies

The athletic demonstrator platform was designed to be highly con¯gurable, allowing

for di®erent multimodal designs for the prevision of concurrent and terminal mul-

timodal feedback on motor performance. It was also designed to handle a large

variety of motions with the fusion capture method. This °exible design has led to a

series of research questions on multimodal implementation which we have addressed

through research studies. These questions include: (i) What categories of perfor-

mance are present in real motor training feedback from a trainer to a subject, and

through which modalities do these interactions occur? (ii) How can a system observe

these metrics of performance in an individual's motion? (iii) Does individual pref-

erence play a role in the assignment of modalities to feedback in a multimodal

environment? Findings related to each of these questions are discussed below, and

together they will inform the ¯nal design of the athletic demonstrator platform.

3.3.1. Case study on categories of feedback

To address the ¯rst question, real motor training scenarios were observed as part of a

case study between a subject and a martial arts trainer. The goal of the ¯rst phase in

this case study was to determine what forms of feedback occur in real-time as the

subject interacts with the trainer, and in what modalities these interactions occur.

To achieve this, a live training session was recorded between these individuals on

video, and speci¯c instances of feedback given by the trainer during the interaction

were noted. For these feedback instances, both the modality of feedback and the

category of feedback were determined.

Through this study, detailed in [55], three main categories of real-time motor

feedback were identi¯ed: (i) Posture: a spatial measure of feedback relating to the

con¯guration of the user's body and limbs during motion; (ii) Progression: a spatial

metric which relates to the range of motion and the accuracy of an individual's

motion trajectory compared to the ideal motion; and (iii) Pacing: a temporal
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measure representing the speed of an individual's motion, its consistency, and its

comparison to the ideal rate of motion.

Together, the three categories above constitute a complete representation of

motor performance. While they were applied in this case to rehabilitative motion,

these categories can be applied toward sports motions as well. For example, a

football or baseball throw relies on proper con¯guration of the elbow and grip of the

ball (posture), momentum of forward motion prior to release (pacing), and release

of the ball at the correct moment to achieve an ideal trajectory (progression), as

indicated in [4].

The primary modalities of feedback discovered were audio (delivered as verbal

feedback from the trainer), visual (delivered as demonstrations of correct motion by

the trainer), and haptic (delivered as guiding nudges by the trainer to ensure the

subject reaches the desired range of motion).

The ¯rst design of the athletic demonstrator platform uses primarily postural

information to deliver score-based feedback as it is often the most important cate-

gory of feedback for performance in sports motion, but other categories of feedback

will be added to the platform to allow for a richer set of information on performance

with the potential to improve motor learning.

3.3.2. Case study on quanti¯cation of feedback

Once the categories of feedback and modalities of feedback in motor learning were

determined, the next step was to determine how an automated system can observe and

provide feedback on an individual's performance in each of these categories. In the

athletic demonstrator platform, the system has access to a 3-dimensional represen-

tation of a user's motion as a time-series dataset extracted from fused Kinect and IMU

data. In a similar project, `̀ Autonomous Training Assistant" [56], we found that all

three categories of performance can be inferred from this data by comparing to expert

motion. To determine when to provide feedback, it is useful to set a threshold at which

an error can be identi¯ed in each category. In other words, once the user's motion

deviates from the expert's motion by a targeted amount, feedback can be given to

correct that motion. We call this method `̀ tolerance thresholding", and it can be used

to re¯ne our de¯nition of each modality of feedback in the following ways:

Postural data may be described as the way in which an individual's joint angles,

and for the relevant joints in a motion, relate to one another and to an expert's joints

in 3D space. At any given point in time, the Kinect can determine the location and

angle of a user's shoulders, elbows, wrists, knees, and other joints for coarse postural

adjustment (¯ne postural adjustment requires more sensitive recording mechanisms

which may be implemented, for example, as wearable sensors). For each joint related

to the posture of a motion, we can de¯ne postural performance as the proximity of a

user's joint angle to that of the expert at that point in time, adjusted using Dynamic

Time Warping (DTW) methods to ensure the two are equally scaled. The tolerance
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threshold for posture can then be de¯ned as the maximum amount, in degrees, that a

subject's joint is allowed to deviate from the expert's joint for the motion to be

considered `̀ correct". Deviation beyond this point can be considered an error and

feedback can be given accordingly.

For progression, a system can observe the trajectory of a user's motion and

compare it to the expert's trajectory for assessment, noting the proximity of the two

in time-adjusted 3D space. It would be di±cult to perform this assessment for every

recorded data point of a motion in real-time; instead, only the most essential points,

i.e., `̀ critical points", representing the shape and form of the motion may be ob-

served. An arc, for example, can be represented as a progression of ¯ve points in

space. At these points along the motion, a user's data point can be compared to an

expert's data point using a standard 3-dimensional distance measure. The tolerance

threshold can be de¯ned for progression as the maximum allowed distance between

two critical points for a motion to be `̀ correct" at that point in time.

Finally, for pacing, a system can observe the rate at which a user progresses from

the start to the end of a motion, compared to an expert. The di®erence between these

two forms the user's error in pacing. A user's motion is allowed to be slower or faster

than the expert's motion up to a speci¯c tolerance threshold to be considered

`̀ correct". Beyond this range, feedback is necessary. Note that in this case a system

must specify, as the trainer does in our ¯rst example above, whether the motion is

slower or faster than the desired rate so that the user can make adjustments in the

proper direction.

The ¯nal design of the athletic demonstrator platform can use the above metrics,

determined through the quanti¯cation of the trainer's feedback in the case study, to

form a detailed pro¯le of a user's performance for a motion.

3.3.3. Case study for individual preference

To determine the e®ects of individual preference on the e®ectiveness of a modality in

a multimodal feedback scenario in motor learning, a study was designed with the case

study subject wherein a multimodal environment with the Autonomous Training

Assistant was presented. In this environment, the subject was asked to complete a

series of simple motor exercises with two feedback conditions. In the ¯rst condition,

modalities (haptic, audio, visual) were assigned to feedback categories (posture,

progression, pacing) based on the mapping suggested by the review of Sigrist et al.

[53] for concurrent multimodal feedback. In the second condition, the subject was

able to choose the mapping based on individual preference. The subject then com-

pleted a series of three basic martial arts exercises (umbrella motion, twirl motion,

and witik motion) assigned by the subject's martial arts trainer using the Autono-

mous Training Assistant interface for each condition.

Each exercise was completed in a 2-minute interval with breaks in-between, and a

longer break between the two conditions to prevent fatigue and minimize learning

e®ects. The subject's performance was measured in each category using error rate in
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each of the three performance categories. It was found that in the preference con-

dition, the subject performed signi¯cantly better in categories that were mapped

di®erently by preference, while performance in unchanged categories of feedback

remained the same between conditions. This improvement held consistently across

all three exercises, suggesting that individual preference in multimodal feedback

selection may have an e®ect on performance in multimodal training environments.

Furthermore, it was observed that, in both conditions, the subject would focus on a

single modality of feedback over the other modalities in the presence of multimodal

feedback. In this case, the subject seemed to focus on haptic feedback as indicated by

an increased responsiveness to feedback in modality.

Further studies on a larger scale using the athletic demonstrator platform can

help determine whether these observations are generalizable across a variety of users

and motor training exercises. Currently, the platform is capable of providing ter-

minal feedback using a score system to indicate performance on a motor exercise via

expert data, which is purely visual. Haptic feedback will be added to the platform

through the introduction of wrist-worn vibrotactile motors to guide the user at

regular intervals through movements as initially described in [55]. Furthermore,

rhythmic audio cues will be added to accompany both the demonstration and at-

tempt screens of the platform to help the user compare the rhythm of their motion to

that of an expert as an additional form of evaluation.

4. Wait Time and Queue Estimation

The objective of this project is to enrich the fan experience by providing access to

wait times at restrooms and concession stands via a mobile app. Such a technology

will allow fans to maximize their time watching and enjoying a game rather than

waiting in long lines during the course of a game. We adopt a computer vision based

approach to count the number of people in a queue. We assume the presence of

cameras in strategic locations in the vicinity of restrooms and concession stands; the

video feed from these cameras is analyzed to accurately estimate the count of people

in the queues. Once the count is obtained, wait times can be obtained from the

average service time per person.

Counting the number of objects in an image is a problem of paramount practical

importance. It arises in myriads of real-world applications including crowd behavior

monitoring, security and surveillance, medical imaging and developing infra-

structures for smart cities, among others. Counting is often posed as a supervised

learning problem, where a regression function is learned directly from some global

image features to the number of objects in it. The regression-based algorithms depict

commendable performance in counting the number of objects in images. However,

they necessitate a large amount of manually annotated data from human oracles to

train the regression models. This is an expensive process in terms of time, labor and

human expertise. Further, annotating an image for object counting requires much

more time and e®ort than annotating an image for a face recognition or an object
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recognition application, for instance. Figure 6 shows two images of pedestrians in a

shopping mall and in an outdoor walkway, together with the corresponding ground

truth counts. It is evident that hand-labeling such images with counts of objects is an

extremely tedious task and highly prone to annotation errors. Thus, while anno-

tating a face/object image requires only a cursory glance, counting objects is much

more laborious and demands signi¯cantly more time, e®ort and concentration from a

human oracle. It is therefore a signi¯cant challenge to obtain a large amount of

labeled training images with the exact counts of the number of objects in them. In

this paper, we propose a novel learning framework, with the following two features,

to address this fundamental problem: (i) the ¯rst feature, binary user feedback,

relaxes the requirement of exact count of objects as labels; (ii) the second feature,

active sampling, aims to reduce the amount of labeled training data (and hence, the

amount of manual e®ort) required to induce a regression model. These are detailed

below:

4.1. Binary user feedback

We present a general learning framework which requires only binary (yes/no)

feedback from the user. During each instance of interaction, the human user is

presented with an image and a threshold (an integer) and he merely has to say

whether the number of objects in the image is greater than the threshold or not.

Providing such an input is extremely easy; it is also less prone to human errors as the

number of objects in an image needs to be compared only against a given threshold

every time.

In order to quantitatively compare the two types of user feedback: exact (where

the exact count of the number of objects needs to be provided) and binary (where

only a yes/no response needs to be provided about whether the count of objects is

greater than a given threshold), we conducted experiments on 15 users. Each user

was shown a sequence of four random images, one from each of the following

Fig. 6. Two images with ground truth object counts.
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datasets: the Mall [37], the UCSD pedestrians [10], the Fudan [57] and the TRAN-

COS [42]. These datasets contain images captured under challenging real-world

conditions. For the ¯rst two images, the user was asked to provide exact annotations

and for the next two, binary annotations (the thresholds for the binary annotations

in the experiment were computed using our algorithm and is detailed in Sec. 4.4).

Sample images are shown in Fig. 7.

We computed the response time (time taken to annotate an image) for both exact

and binary annotations; we also requested each user to provide an overall score

between 1 (extremely di±cult) and 10 (extremely easy) about the ease of binary

annotation over exact annotation. The results are depicted in Table 6. We note that

the binary feedback requires much lesser user interaction time than the exact

annotations. Moreover, as evident from the scores, users were much more comfort-

able with the binary annotations since it does not involve the strenuous task of

counting the exact number of objects in an image. In summary, binary feedback

provides an extremely appealing user interaction model for the vision based object

counting application.

Fig. 7. Exact and binary annotation examples (the thresholds for the binary annotations in the exper-

iment were computed using our algorithm).

Table 6. User study results on exact and binary annotations.

Annotation type Mean response time (seconds) Mean score

Exact 20.98� 4.34 9.26� 0.88

Binary 11.32� 4.74
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4.2. Active sampling

Active learning algorithms have gained popularity in reducing human annotation

e®ort for training machine learning models. When exposed to large amounts of

unlabeled data, such algorithms automatically identify the salient and prototypical

instances which can augment maximal information to the underlying models [50].

While serial-query based active learning algorithms query a single unlabeled sample

at a time, batch mode active learning (BMAL) techniques query a batch of samples

simultaneously for manual annotation and are e®ective in utilizing the presence of

multiple labeling oracles. BMAL has been successfully used in a variety of computer

vision applications such as face and facial expression recognition [8], image and video

retrieval [31] and image clustering [22] among others. In this work, we exploit batch

sampling algorithms to identify the exemplar images that need to be queried for

labels, from vast amounts of unlabeled image samples. This can tremendously reduce

the human annotation e®ort required to induce the regression learner, as only the

exemplar samples identi¯ed by the algorithm need to be labeled manually. To the

best of our knowledge, this is the ¯rst research e®ort to address the problem of active

data selection with binary user feedback in the context of vision-based object

counting. Although validated on object counting in this paper, the proposed algo-

rithm is generic and can be used in any regression-based application where the

exemplar instances need to be selected from large amounts of unlabeled data and a

model needs to be trained based on binary user feedback.

4.3. Related work

In this section, we present a survey of vision based object counting methodologies as

well as a brief survey of active learning.

Vision-based Object Counting: Unsupervised learning techniques have been

used to address the vision-based object counting problem. They mostly rely on

grouping objects based on self-similarities [1] or motion similarities [44]. However,

these techniques are limited in their counting accuracy, which has paved the way for

supervised learning approaches for counting. Detection-based supervised algorithms

attempt to train object detectors (e.g. pedestrian detectors) to localize the individual

object instances within an image; the count is then estimated as the number of

localized objects. Common approaches of detection-based counting include non-

maximum suppression [16], generative techniques [5] and blob tracking [26] among

others. Fusion based approaches have also been explored for people counting [32]

which rely on multiple sources of information (low con¯dence head detections, rep-

etition of texture elements and frequency domain analysis) to estimate counts of

individuals in extremely crowded images. However, all these techniques need to solve

object detection, which is a challenging computer vision problem, especially for

overlapping and occluded instances.

The regression-based counting techniques avoid solving the hard detection

problem and attempt to learn a mapping directly from some global image feature to
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the number of objects in it. Cho et al. [13] used edge features together with back-

ground subtraction and reported promising performance while estimating crowd

density using a neural network. Kong et al. [34] performed feature normalization in a

neural network model to deal with perspective projection and camera orientation and

proposed a viewpoint invariant approach to count pedestrians. Chen et al. [12] re-

cently proposed a scalable multi-output regression model to estimate people count in

spatially localized regions. Marana et al. [38] postulated that images of low density

crowds tend to present coarse textures while images of dense crowds present ¯ne

textures; a self-organizing neural network was used to extract features from such

images for crowd density estimation. Lempitsky and Zisserman [35] proposed to

recover a density function F as a real function of the pixels in an image I , so that

integrating F over the entire image yields the count of the number of objects in it.

Very recently, deep learning algorithms have been exploited to count the number of

objects in an image [49].

Active Learning: Active learning is a well-studied problem in machine

learning. Several techniques have been developed over the last several years and a

review of these can be found in [50]. In a typical pool-based batch mode active

learning (BMAL) setting, the learner is exposed to a pool of unlabeled instances

and it iteratively queries batches of samples for annotation. Initial BMAL tech-

niques were largely based on heuristic measures such as maximizing the diversity of

the selected samples, computed as their distance from the decision hyperplane [6].

More recently, optimization based strategies have been proposed which have been

shown to outperform the heuristic approaches. Hoi et al. [30] used the Fisher in-

formation matrix as a measure of model uncertainty and proposed to query the set

of points that maximally reduced the Fisher information. Semi-supervised BMAL

algorithms have also been explored in the context of SVMs, where a kernel function

was ¯rst learned from a mixture of labeled and unlabeled samples, which was then

used to identify the informative and diverse examples through a min-max frame-

work [31]. Guo and Schuurmans [25] proposed a discriminative strategy that se-

lected a batch of points which maximized the log-likelihoods of the selected points

with respect to their optimistically assigned class labels and minimized the entropy

of the unselected points in the unlabeled pool. Guo also proposed a batch mode

active learning scheme which maximized the mutual information between the la-

beled and unlabeled sets and was independent of the classi¯cation model [24].

Chakraborty et al. [9] introduced an active matrix completion algorithm to select

the most informative queries to complete a low rank matrix. Researchers have also

explored theoretical properties of active learning and have established concrete

mathematical bounds on the expected number of queries to achieve a given

error rate [15].

While active learning has been extensively studied in a variety of computer vision

applications, it has been comparatively much less explored for object counting.

Loy et al. [37] proposed a regression based active learning algorithm (m-landmark)

for crowd counting, which was based on computing the normalized Graph Laplacian
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L followed by k-means clustering. However, the algorithm did not consider binary

user feedback about the object count. The Elastic Net algorithm proposed by Tan

et al. [57] was based on a similar clustering strategy; however, it was more focused on

selecting a promising set of initial training samples for semi-supervised learning,

rather than active learning. In this paper, we propose a novel object counting al-

gorithm which can identify the exemplar unlabeled samples for manual annotation

and requires only binary feedback from human oracles. We now describe the pro-

posed framework.

4.4. Proposed framework

Let fxl1; xl2; . . . ; xlNg be the set of N instances, which are labeled with their exact

counts Y ¼ fy1; y2; . . . ; yNg and let fxu1; xu2; . . . ; xuMg be the set of the unlabeled

instances. Our objective is to select a batch containing k most informative unlabeled

samples from the unlabeled set, obtain their binary annotations from the human

oracle and use that to predict the labels of all the unlabeled samples. This task can be

decomposed into the following two research questions (RQs): (i) How can we use

active learning to select the k most informative samples from the unlabeled set for

binary user annotation? and (ii) Given the current labeled set containing the exact

counts and the set of k newly selected samples from the unlabeled set with binary

(yes/no) annotations, how can we predict the labels of all the unlabeled samples?

Conventional regression-based counting algorithms (such as the ridge regression

or the support vector regression) require the exact count of the number of objects in

each data sample and are hence unsuitable for our application. Given our problem

set-up, we need a framework which can incorporate inequality constraints (greater

or less than a given threshold) in estimating the count of objects in images. An

alternative strategy is to pose regression learning as the problem of completing a

low rank matrix [9]. Further, Marecek et al. [39] recently proposed a matrix com-

pletion algorithm under interval uncertainty, to impute the missing entries of a

data matrix in the presence of equality and inequality constraints. In this paper, we

exploit matrix completion algorithms for the problem of object counting from bi-

nary user feedback.

4.4.1. Matrix completion

The data collected in most computer vision/machine learning applications are

structured in the form of matrices. For instance, in a classi¯cation/regression

problem, each row represents a data sample, with corresponding label(s) and each

column denotes a feature; in a recommendation system, the data is represented in the

form of a matrix, where each row is a user, each column is an object and the cor-

responding entry represents the rating given by the particular user to that object.

Due to °aws in the feature acquisition process or the unwillingness of subjects to

disclose personal information, the collected data often contains missing entries,

which can bias results, reduce generalizability and lead to erroneous conclusions.
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Matrix completion algorithms attempt to reconstruct a matrix from a set of partially

observed entries and are of immense practical importance [7, 45]. Such techniques

have also been exploited to address classi¯cation and regression problems [23]. The

fundamental assumption is that the stacked matrix Z ¼ ½Y 0;X 0� containing the

label matrix Y 0 and the feature matrix X 0 is jointly low rank. The missing entries in

the matrix correspond to the labels of the unlabeled samples and are estimated using

matrix completion algorithms. It is posed as the following optimization:

min
Z

rankðZÞ
s:t:: Zij ¼ Eij ; 8i; j 2 E

ð2Þ

where E is the set of the observed entries. Several methods have been devised to

e±ciently optimize this problem. The Fixed Point Continuation (FPC) method in

particular, is an iterative algorithm consisting of a gradient step and a shrinkage step

in each iteration with guaranteed monotonic convergence [23].

4.4.2. RQ1: Active sampling of the unlabeled data instances

Our object counting framework is based on the theory of matrix completion, ne-

cessitating an active learning framework within the matrix completion paradigm.

Chakraborty et al. [9] recently proposed the Active Matrix Completion algorithm to

identify the missing entries in a partially observed matrix, which are the most in-

formative to reconstruct the original matrix. The fundamental idea was to compute a

measure of uncertainty of prediction of every missing entry in the incomplete data

matrix; the top uncertain entries were then queried for manual annotation. Three

strategies were presented to quantify the prediction uncertainty of each missing

entry in the incomplete matrix: (i) Conditional Gaussians, which assumes that the

set of missing entries conditioned on the set of observed entries follows a multivariate

normal distribution; the mean and covariance matrix of the conditional distribution

are computed from the given data and the diagonal elements of the covariance

matrix quanti¯es the variance (uncertainty) associated with each imputation; (ii)

Query by Committee (QBC), which uses a committee of matrix completion algo-

rithms to impute the missing entries and quanti¯es the prediction uncertainty of a

particular entry as the level of disagreement among the committee; and (iii) Com-

mittee Stability, which is similar to QBC and quanti¯es the prediction uncertainty

using the regularity of predictions of a particular entry from an ensemble of

predictors.

In this work, we used the QBC algorithm for active instance sampling due to its

promising performance in matrix completion [9] and active learning in general, its

strong theoretical properties [51] and ease of implementation. Speci¯cally, a com-

mittee of matrix completion algorithms were applied on the partially observed data

matrix to impute the missing values. The variance of prediction (among the com-

mittee members) of each missing entry was taken as a measure of uncertainty of that

entry. The top k uncertain entries were then queried for manual annotation. We used
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the following three commonly used matrix completion algorithms as members of our

committee:

k-NN: The k-nearest neighbor algorithm identi¯es the k most similar features to

the current one with a missing value and uses the average of these k nearest

neighbors as an estimate for the missing entry [28].

EM: This method imputes the missing values using the Expectation Maximiza-

tion (EM) algorithm [28]. An iteration of the EM algorithm involves two steps. In the

E step, the mean and covariance matrix are estimated from the data matrix (with the

missing entries ¯lled with zeros or estimates from the previous M step); in the M step,

the missing value of each data column is imputed with their conditional expectation

values based on the available entries and the estimated mean and covariance. The

mean and the covariance are re-estimated based on the newly completed matrix and

the process is iterated until convergence.

SVD: Singular value decomposition (SVD) is a standard method for matrix

completion based on low-rank approximation [28]. In this method, initial guesses are

¯rst provided to the missing data values. SVD is then applied to obtain a low rank

approximation of the ¯lled-in data matrix. The missing values are then updated

based on their corresponding values in the low rank estimation. SVD is applied to the

updated matrix again and the process is iterated until convergence.

4.4.3. RQ2: Counting with binary user feedback

In our framework, the user provides only binary (yes/no) annotations to the un-

labeled samples selected using active learning. This necessitates a matrix comple-

tion scheme that can handle inequality constraints apart from equality constraints,

as in Eq. (2). TheMACO algorithm proposed by Marecek et al. [39] uses alternating

parallel co-ordinate descent to complete a matrix in the presence of equality, lower

bound and upper bound constraints. Let X be the m � n matrix to be recon-

structed. Suppose that for the elements ði; jÞ 2 E, we have equality constraints, for

the elements ði; jÞ 2 L we have lower bounds and for the elements ði; jÞ 2 U , we

have upper bounds. Completing the matrix can thus be posed as the following

optimization:

min
X2<m�n

rankðXÞ
s:t:: Xij ¼ X E

ij ; 8ði; jÞ 2 E

Xij � X L
ij ; 8ði; jÞ 2 L

Xij � X U
ij ; 8ði; jÞ 2 U

ð3Þ

The problem in Eq. (3) is NP-hard, even with U ¼ L ¼ � [39]. A popular heuristic

enforces low rank in a synthetic way by writing X as a product of two matrices,

X ¼ AB, where A 2 <m�r and B 2 <r�n Hence, X is of rank at most r. The alter-

nating parallel co-ordinate descent algorithm to solve the above optimization is

outlined in Algorithm 1 (please refer to [39] for more detailed derivations).
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In our object counting application, the initial training set containing the exact

counts of the objects forms the set E. The MACO algorithm is used only with the set

E to derive estimates of the missing labels of the unlabeled samples. These estimates

are used as thresholds for binary user query; the binary user feedback on the selected

unlabeled samples constitute the sets L and U . The MACO algorithm is used again

with the sets E, L and U to estimate the missing labels of the unlabeled samples. The

pseudo-code of our algorithm is presented in Algorithm 2.

4.5. Experiments and results

Datasets and Feature Extraction: We used four challenging datasets from dif-

ferent application domains to study the performance of the proposed framework: (i)

the Mall dataset [37] containing video frames collected using a publicly accessible

webcam for crowd counting and pro¯ling research; (ii) the UCSD Pedestrian dataset

[10], which contains videos of pedestrians on UCSD walkways, taken from a sta-

tionary camera; (iii) the Fudan Pedestrian dataset [57], which contains video frames

captured at one side entrance of Guanghua Tower, Fudan University, Shanghai,

China; and (iv) the TRa±c ANd COngestionS (TRANCOS) dataset [42], a novel

benchmark for (extremely overlapping) vehicle counting in tra±c congestion situa-

tions. All these datasets are captured under challenging real-world conditions with

severe inter-object occlusions, varying crowd densities from sparse to crowded, as

well as diverse activity patterns (static and moving crowds) under varying illumi-

nation conditions at di®erent times of the day. Sample images from these datasets
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are shown in Figs. 6 and 7. The histogram of oriented gradients (HOG) feature [14]

was used as the descriptor of each image frame due to its established performance in

computer vision tasks.

4.5.1. Experimental setup

Each dataset was randomly divided into a labeled training set and an unlabeled set.

The batch size was set at 10% of the dataset size (as detailed in Table 7). A batch of

samples was queried from the unlabeled set, appended to the labeled set and the

performance was evaluated on the complete unlabeled set. We studied the per-

formance of binary annotations (where the user merely provides yes/no answers as

to whether the number of objects in an image is greater than a given threshold) for

both random selection as well as active sampling of the unlabeled samples. In

random sampling, a batch of samples was selected at random from the unlabeled set

Table 7. Dataset details.

Dataset Number of samples Batch size

Mall 2000 200
UCSD 2000 200

Fudan 1500 150

TRANCOS 1200 120
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for annotation while in active sampling, the proposed active learning framework

was used to select the unlabeled samples for annotation. We also studied the

performance of exact annotations (where the user provides the exact count of the

number of objects in an image) for both random and active sampling. For exact

annotations, we used only the equality constraint set E in the MACO algorithm;

the lower and upper bound constraint sets L and U were empty since the user

provided the exact counts. We used the mean-squared error (MSE) on the unla-

beled set as the evaluation metric in our work. For each dataset, we studied the

performance with di®erent sizes of the initial training set, from 10% to 50% in steps

of 10%.

4.5.2. Regression using matrix completion

Matrix completion algorithms have been used successfully to address regression

problems [9]. We ¯rst studied the performance of matrix completion for the regres-

sion-based object counting problem. We used three common regression algo-

rithms ��� ridge regression, kernelized ridge regression and support vector

regression ��� as comparison baselines. The results on the four datasets are reported

in Table 8 (in each experiment, 70% of the data was used for training and 30% for

testing).

Thus, matrix completion provides comparable performance to other counting

techniques. However, our method has the °exibility of incorporating binary user

feedback in contrast to other methods which need the exact counts for model

training.

4.5.3. Active counting with binary feedback

The results for the four datasets are reported in Tables 9–12. All the results were

averaged over 5 runs (with di®erent labeled and unlabeled sets) to rule out the e®ects

of randomness.BaseMSE denotes the mean squared error using the current training

data (before sample selection and annotation); Binary Ann denotes the MSE

corresponding to binary annotations while Exact Ann denotes the MSE corre-

sponding to exact annotations. Random denotes the case when the unlabeled

samples are selected at random for user annotation while Active denotes the case

when active sampling is used to select the unlabeled samples.

Table 8. Comparison of matrix completion (MC) against regression algorithms. Error metric:

Mean squared error.

Dataset MC Ridge regression Kernel ridge regression Support vector regression

Fudan 2.09 1.51 3.0 1.54
Mall 9.26 4.60 7.20 4.69

TRANCOS 115.99 86.30 147.08 89.84

UCSD 30.01 6.54 7.13 6.78
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Table 12. MSE comparison results on the TRANCOS dataset.

Lower values denote better performance.

Binary Ann Exact Ann

Train % BaseMSE Random Active Random Active

10 1.3 eþ03 984.14 911.94 861.94 829.24

20 1.23 eþ03 685.56 640.86 574.59 515.72

30 1.1 eþ03 548.57 483.86 440.63 371.47

40 952.78 394.25 344.82 313.92 271.21
50 794.23 296 266.1 227.15 197.07

Table 9. MSE comparison results on the Mall dataset. Lower

values denote better performance.

Binary Ann Exact Ann

Train % BaseMSE Random Active Random Active

10 918.14 629.59 505.75 548.27 394.24

20 813.29 475.91 317.65 422.42 225.02
30 714.46 370.50 209.1 344.80 148.78

40 612.29 334.80 154.68 322.69 111.5

50 510.05 253.69 90.99 264.71 58.35

Table 10. MSE comparison results on the UCSD dataset. Lower
values denote better performance.

Binary Ann Exact Ann

Train % BaseMSE Random Active Random Active

10 780.71 527.55 526.32 361.89 347.33

20 704.85 407.78 315.24 269.77 144.10

30 611.38 311.61 247.05 218.77 136.78

40 525.84 245.6 176.75 158.16 70.09
50 443.26 218.43 151.79 152.72 73.79

Table 11. MSE comparison results on the Fudan dataset. Lower

values denote better performance.

Binary Ann Exact Ann

Train % BaseMSE Random Active Random Active

10 36.21 30.79 28.43 28.51 24

20 33.43 27.92 19.81 22.41 15.84

30 31.89 19.11 12.61 15.85 10.99

40 28.72 17.64 9.8 14.62 8.21
50 24.23 16.67 7.86 14.93 7.04
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We ¯rst note that the MSE reduces with increasing size of the initial training

set, which is intuitive. We also note that the algorithm based on binary annota-

tions delivers much better performance compared to the baseline error. This

corroborates the usefulness of the proposed framework in tremendously reducing

the error rate by exploiting only binary feedback from the human user. Moreover,

active sampling successfully identi¯es the salient and exemplar unlabeled instances

and further improves the error rate over random selection in a binary user feed-

back setting. The same pattern is evident for di®erent sizes of the initial training

set and for all the datasets, depicting the generalizibility of our framework.

Thus, while conventional learning frameworks can operate only with data anno-

tated with the exact counts of objects, our framework o®ers more °exibility and

ease of interaction between the user and the machine. From these results, we

conclude that the proposed framework can be immensely useful to boost the ac-

curacy of an object counting system while minimizing the labeling burden on

human oracles.

The algorithm based on exact annotations produces better performance compared

to that based on binary annotations. This is intuitive, as exact annotation provides

more information to the underlying machine learning models. As before, active in-

stance sampling further reduces the error rate compared to random sampling. More

importantly, we note that active sampling with binary user annotations often pro-

vides comparable results (and sometimes, even outperforms) random sampling with

exact annotations, which is the conventional method to address the counting

problem. This depicts the merit of our algorithm in tremendously reducing human

annotation e®ort with minimal e®ect on the counting accuracy.

4.5.4. Threshold study

In our framework, a threshold is ¯rst computed by the algorithm and the user

provides a binary feedback as to whether the number of objects in the image is

greater or less than the threshold (the threshold is computed as the current label

estimate of the sample in question). Thus, the user annotation time depends on the

threshold computed by the MACO algorithm. If the threshold is close to the actual

count of objects, the annotation time will be higher and vice versa. In this experi-

ment, we study the thresholds computed by our algorithm on 50 random unlabeled

samples for 10% and 50% initial labeled training data. The results on the Mall and

TRANCOS datasets are depicted in Fig. 8.

We note that with 10% labeled training data, the thresholds computed are coarse

and thus, the binary annotation time will be low. As the percentage of training data

increases, the prediction accuracy increases and consequently, the computed

thresholds are much closer to the actual counts. Hence, the binary annotation time

will be almost similar to the absolute annotation time, since an exhaustive count of

all the objects will be necessary for accurate annotations. Our framework is therefore

most useful in the initial stages of learning, when the amount of labeled training data
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is scarce. With abundant labeled data, absolute annotations are more advantageous.

A hybrid framework can be envisioned, where binary annotations are used in the

initial stages and absolute annotations in the later stages of learning. This will be

investigated as part of future research.

5. Discussion and Future Work

Three fan enrichment projects in the scope of the Smart Stadium for Smarter Living

initiative were presented. These projects targeted improved safety (Crowd Under-

standing), fan engagement (Athletic Demonstrator Platform), and e±ciency/con-

venience (Wait Time/Queue Estimation). Through use of smart stadia as testbeds,

the manageable size and heterogeneity of these testbeds enabled practical trials while

still providing a useful environment to explore challenges of scalability and real-

timeness. Preliminary results presented here demonstrate the potential of these

technologies for smart city solutions.
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(d) TRANCOS: 50% training data

Fig. 8. Study of the threshold computed in our algorithm. Best viewed in color.
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As part of future work, we are developing and deploying new projects for the

smart stadia. These projects include smart solutions to address issues of congestion

and di±culty parking during large events at the stadia; game-within-a-game halftime

interactions to enrich fan engagement; and projects that target important priority

areas of energy e±ciency and sustainability. We are also investigating the use of the

Athletic Demonstrator Platform as a low-cost, accurate platform to augment tra-

ditional athlete training intended for use outside of sessions involving the trainer or

coach. Moreover, future studies with the platform are being planned to observe how

this feedback can be integrated over time to adapt to a user's pro¯ciency level, and

how this integration can di®er between individuals and various types of movement.

One such study will investigate how multimodal feedback delivery may be tuned for

fast sports motion interaction as opposed to slower rehabilitative movements, and

how the type of movement may be inferred from the nature of the expert data

samples.
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