

Novel Chemical Sensors Based on Boronic Acids for Glucose Detection

Danielle Bruen, Colm Delaney, Larisa Florea* and Dermot Diamond

Insight Centre for Data Analytics, National Centre for Sensor Research (NCSR), School of Chemical Sciences, Dublin City University, Ireland.

- Background
- Project Aim
- Boronic Acids (BAs) for Sugar Recognition
- Direct Sensing in Solution
- Indirect Sensing
 - In Solution
 - In lonogels
- Conclusions
- Future Work

OÉ Gaillimh

NUI Galway

http://www.myomnipod.com/

Disease: Diabetes and the consequential side effects

- Monitoring glucose levels to prolong life expectancy
- Currently no non-invasive, continuous monitoring systems available

OÉ Gaillimh

NUI Galway

Demonstrates a need for real-time, non-invasive monitoring

http://mevsdiabetes-bloglapedia.blogspot.ie/2014/09/fda-approves-once-weekly-dulaglutide.html

Implanted Wearable Devices

Roche

ACCU-CHEK[®]

OÉ Gaillimh

NUI Galway

Advantages:

- Real-time monitoring
- Continuous
- Coupled to insulin pump
- Elimates injections via syringe

Disadvantages:

Invasive

Finger Pricking Method

Advantages:

Minimally Invasive

Disadvantages

- Not continuous
- Insulin injections required
- Miss episodes of hyper- and hypoglycaemia

https://www.accu-chek.co.uk/gb/products/

Electrochemical sensor in a wearable platform

Battery Powered

Interference from Electroactive Species in Ocular fluid

Use of Enzymes

Google

NOVARTIS

H. Yao, et al, *Biosensors and Bioelectronics*, **2011**, *26*, 3290-3296 B.E. Watt, et al, *Toxicol. Rev.*, **2004**, *23(1)*, 51-57

OÉ Gaillimh

NUI Galway

O Realistically....Not a Real Working Device

A 30 µL solution of glucose oxidase

A layer of GOD/titania sol-gel membrane

A spread of 30 µL Nafion® on sol-gel membrane

A transparent sensing area after rinsing with DI water

- Attached to a BASi Epsilon- EC Potentiostat +400 mV
- Sensing platform proposes glucose monitoring between 0.5-50 mM

OÉ Gaillimh

NUI Galway

- Ocular glucose range is 0.05-0.5 mM and up to 5 mM in diabetics
- Major shortcomings to meet immediate expectations

H. Yao, et al, *Biosensors and Bioelectronics*, **2011**, 26, 3290-3296

sfi

DC

OÉ Gaillimh NUI Galway

sfi

OÉ Gaillimh

NUI Galway

Fluorophore

DC

Direct Sensing

(i) Addition of OH⁻ ions/glucose(ii) Addition of water/removal of glucose

(i) Anhydrous dimethylformamide, N₂, 80 °C for 48h.

Successful synthesis of novel BA sensors were confirmed by NMR.

OÉ Gaillimh

NUI Galway

b pK_a Investigation – Glucose Sensing pH Range

Glucose response for m-COOHBA and o-COOHBA (0.5 mM) in different pH buffer solutions ranging from pH 5-11.

OÉ Gaillimh

NUI Galway

 α -D-Glucose binding to the BA derivatives forming 1,2-*cis*-boronate esters

DC

Indirect Sensing

Indirect Sensing in Solution

Indirect Sensing in Solution – Sensor Synthesis

OÉ Gaillimh

NUI Galway

(i) $PdCl_2(PPh_3)_2$, Cul, diethylamine, Ar, stirred at RT for 24h (66%). (ii) anhydrous tetrahydrofuran, N₂, reflux at 80 °C for 48h (21%).

Successful product formation confirmed by NMR.

DBA2

Notiuarescentent

DC

Two-Component Sensing in Solution – Fluorescence Quenching

Excitation and emission spectra of 4 µM 7HC in pH 8.12 buffer solution with increasing DBA1 concentrations up to 0.5 mM (125 eq.); Medium sensitivity; 2.5 nm bandwidth

Excitation and emission spectra of 7HC (4 μ M) and DBA1 (700 μ M) (1:175 eq.) in pH 8.12 buffer solution with increasing concentrations of glucose up to 5 mM; Medium sensitivity; 2.5 nm bandwidth

Two-Component Sensing in Solution – Fluorescence Quenching

Excitation and emission spectra of 4 μ M 7HC in pH 7.4 with minimal MeOH (40 μ L) with increasing DBA2 concentrations up to 0.3 mM (75 eq.); Medium sensitivity; 2.5 nm bandwidth

Two-Component Sensing in Solution – Fluorescence Recovery

Excitation and emission spectra of 7HC (4 μ M) and DBA2 (80 μ M) (1:20 eq.) in pH 7.4:MeOH (1:1) (pH 8.6) with increasing concentrations of glucose up to 100 mM; Medium sensitivity; 2.5 nm bandwidth

Indirect Sensing in lonogels

DC

NUI Galway

Two-Component Sensing in Ionogel 2

- Increased glucose concentrations causes fluorescence quenching in BA.
- -COOH substituent is desired for future anchoring possibilities.

Indirect Sensing

In Solution

- Cationic BA derivative quenches fluorescence of anionic fluorophore and on glucose addition fluorescence can be restored.
- Two-Component Sensing depends on the pK_a of the fluorophore and hence, the pH of the buffer solution.

In lonogel 1

- Both fluorescein and BA are electrostatically immobilised: fluorescence decreases on BA addition and is restored on glucose addition.
- EWGs attached to BA play a role in the quenching efficiency.

In lonogel 2

• Quenched fluorescence by 44%, with increased concentrations of glucose (100 mM)

OÉ Gaillimh

NUI Galway

Immobilisation of the COOHBA sensors on to a lens-like platform.

Indirect Sensing

 The incorporation of the two component sensing ionogels in to a sensing platform, such as a hydrogel patch or contact lens, to allow for non-invasive and continuous monitoring of glucose levels in diabetic patients.

POSTER

Aishling Dunne

"Bipedal Hydrogels Walking in the Light"

ORAL PRESENTATION

Wayne Francis

"Droplets with Life-like Behaviour"

OÉ Gaillimh

NUI Galway

- In particular Adam McColgan, Dr. Colm Delaney, Dr. Larisa Florea and Prof. Dermot Diamond.
- Aishling Dunne, Alexandru Tudor, Jennifer Deignan and Wayne Francis.
- Science Foundation Ireland & INSIGHT Centre (SFI/12/RC/2289).

Thank You for Your Attention!

