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ABSTRACT 

 

The use of Exergy Analysis to Benchmark the Resource Efficiency of 

Municipal Waste Water Treatment plants in Ireland 

 

By 

 

Matthew Horrigan 

 
 

With ever increasing environmental standards and waste water loading rates, energy 

consumption for waste water treatment is predicted to rise by over 20% by 2020 in the United 

States. When considering the resource efficiency of waste water treatment plants factors such 

as effluent quality, carbon footprint and increasing electricity rates act as a driving force for 

sustainable design of these facilities. Exergy analysis has been identified in the literature as a 

powerful tool in the analysis of thermal systems. It enables the resource efficiency of systems 

to be benchmarked, where the process with the greatest exergy destruction represents the 

greatest energy efficiency opportunity. The objectives of this research are: (i) calculate the 

chemical exergy of the relevant process streams within waste water treatment plants; (ii) 

identify the most suitable parameter to calculate the chemical exergy of organic matter; (iii) 

identify exergy losses from process streams that could be utilised to produce work.  Exergy 

analysis of three separate waste water treatment plants has been performed. Having identified 

and measured all the key process input and outputs, a comprehensive exergy analysis has 

been undertaken. Following an extensive literature review, earlier methods to calculate 

chemical exergy of organic matter are critically assessed; chemical oxygen demand was 

identified as the most useful parameter when calculating the chemical exergy of organic 

matter in waste water. Results for the work indicate that organic matter is the principal 

contributor to chemical exergy values in waste water treatment plants. Influent organic matter 

loading rates also greatly impact the exergy destruction rates across a waste water treatment 

plant.  
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1 Introduction  
 

Energy is a key input in the operation of a number of Waste Water Treatment Plant (WWTP) 

processes.  It is used in the initial transportation of waste water to the plant, the biological 

treatment of organic matter and the eventual discharge of treated waste water from the plant. 

Additionally, substantial quantities of other resources such as coagulants and disinfectants are 

consumed in the treatment of waste water. With WWTPs accounting for approximately 1% of 

the world’s total energy consumption [1] and the current instability in the cost of supplied 

electricity, greater emphasis has been placed on proficient use of these fundamental 

resources. Therefore, characterisation and optimisation of all resources within a WWTP is 

crucial. Establishing a connection between energy, resources and sustainability necessitates 

the use of a method to quantify resources and resource consumption within WWTPs; exergy 

analysis is a potential method.     

 

Exergy is a thermodynamic property, which combines the first and second law of 

thermodynamics and can be defined as the maximum theoretical work that can be achieved 

when two systems at different states are brought into equilibrium [2]. Exergy analysis is 

recognised as an important instrument in the analysis of thermal and chemical systems [3, 4]. 

Exergy analysis takes into consideration thermodynamic irreversibilities often neglected by 

the conventional energy balance such as energy losses in heat transfer and chemical reactions 

[5]. However, exergy analysis has rarely been applied to WWTP optimisation. By 

quantifying the exergy content of process streams, the exergy destruction across plant 

processes can be calculated. A hierarchy of inefficient processes can be identified, allowing 

informed design decisions to be made with regard to WWTP sustainability.   
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This research takes a holistic view of all aspects of WWTP treatment with a number of 

WWTPs across Ireland benchmarked based on certain characteristics such as; (i) Population 

Equivalent (PE) load; (ii) type of treatment (i.e. primary, secondary, tertiary); (iii) discharge 

location; (iv) aerobic versus anaerobic treatment of waste water. The benchmarking 

methodology is composed of a number of steps, measurement of: 

 Energy demand of all equipment and processes 

 Waste water treatment parameters (i.e. Chemical Oxygen Demand etc.)  

 Waste water flow rate.  

Once all the information was obtained from the respective WWTPs, the following objectives 

were defined for this research: 

 Determine most suitable method to calculate the chemical exergy of organic and 

inorganic matter for waste water treatment 

 Conduct exergy analyses of a number of WWTPs, quantifying the exergy content or 

work potential of process streams 

 Establish a hierarchy of wastewater treatment plant processes with the greatest 

exergy destruction  

 Determine the exergy losses from WWTP processes that could be utilised to produce 

work.  

 

The pertinent WWTP resource efficiency and exergy research literature is reviewed in 

Chapter 2. The key sections include an introduction to the current state of the waste water 

sector in Ireland and an investigation into the most suitable energy efficient technologies 

applicable to WWTPs; allied to this, a method to achieve sustained savings such as energy 

management systems is also reviewed. The fundamentals of exergy analysis are reviewed 
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along with its application to benchmarking the resource efficiency of WWTPs. The review of 

exergy analysis discusses the pertinent issues relevant to this research such as:   

 How is exergy analysis used to benchmark the resource efficiency of WWTPs? 

 What is the most suitable organic measurement parameter to calculate the 

chemical exergy of organic matter in waste water? 

Chapter 3 details the chemical exergy calculation methodology associated with the exergy 

analysis of WWTPs and provides guidance on how to calculate the chemical exergy of 

process inputs and outputs from WWTP plant processes. In addition, a number of practical 

examples are presented. 

 

The results of the exergy analyses of the respective WWTPs are presented in Chapter 4. The 

site layouts and site descriptions are characterised for each plant. The process inputs and 

outputs for each WWTP process are detailed for each plant, with associated exergy value 

detailed. The exergy destruction for each process is then calculated. 

 

Chapter 5 provides detailed discussion of the results from the exergy analyses of the WWTPs 

in Chapter 4. Finally the conclusions of the research and recommendations for future work 

that could be undertaken are presented in Chapter 6.  

 

  



 

4 

2 Literature Review  
 

The objective of this chapter is to discuss the relevant research in relation to exergy analysis 

of waste water treatment plants. Due to the cross-discipline nature of this research project, 

research findings from other academic fields are reviewed and incorporated in this literature 

review.  

2.1 Overview of Waste Water Treatment Processes and Relevant Parameters   

 

A brief overview of the processes involved in the treatment of waste water is now provided 

and the relevant organic matter parameters in relation to waste water quality are also 

reviewed. 

2.1.1 Organic matter in waste water 

Domestic waste water can contain both solid and dissolved pollutants with organic 

compounds in waste water generally composed of a combination of carbon, hydrogen, and 

oxygen. As all waste water is eventually discharged back into the aquatic environment, 

untreated waste water can have a significant negative effect on the water environment. Proper 

treatment of waste water reduces the risk of waterborne diseases, eutrophication etc. and 

therefore significantly reduces any threat to public health.  

 

Typical waste water constituents are sugars, carbohydrates, fats, soluble proteins, and urea. 

Various techniques have been established to determine the organic content of waste water. 

Gross quantities of organic matter in waste water can be measured by laboratory analysis 

such as Chemical Oxygen Demand (COD), Biological Oxygen Demand (BOD), Theoretical 

Oxygen Demand (THOD), Total Organic Carbon (TOC) and Total Oxygen Demand (TOD). 

These measurement parameters are defined below; as they are of paramount importance when 

assessing the organic chemical matter present in waste water.  
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2.1.2 Organic matter parameters 

Biological oxygen demand. BOD is the quantity of dissolved oxygen consumed by aerobic 

biological organisms in the oxidation of organic matter present in waste water.  

Chemical oxygen demand. COD is the quantity of oxygen required to chemically oxidise all 

organic and inorganic compounds in waste water.  The COD value is usually larger than 

BOD, as some organic substances are oxidised more easily chemically than biologically.   

Theoretical oxygen demand. THOD represents the quantity of oxygen required to oxidise a 

compound to its final oxidation products.  

Total organic carbon. TOC represents the quantity of organic carbon contained within an 

aqueous sample. It can be used to measure the pollution characteristics within waste water.  

Total oxygen demand. TOD is a measure of all matter oxidised in a sample of waste water, 

determined by measurement of the depletion of oxygen after chamber combustion. 

 

2.2 Wastewater treatment plant discharge regulation 

 

The Urban Waste Water Treatment Directive (UWWTD) has set out acceptable measures of 

water quality for WWTPs. Table 1 and Table 2 detail the UWWTD discharge limits for urban 

areas with populations greater than 2,000 PE. Municipal WWTP influent flow rates are 

determined by PE; PE can be defined as, one person within the WWTP collection area is 

expected to produce 200 litres of sewage flow per day containing 60 grams of BOD. 

 

 

 

 

 

http://en.wikipedia.org/wiki/Oxygenation_(environmental)
http://en.wikipedia.org/wiki/Oxygenation_(environmental)
http://en.wikipedia.org/wiki/Oxygenation_(environmental)
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Table 1: Regulations concerning discharges from urban wastewater treatment plants 

and subject to the measures of the Directive from 21 May 1991a (Urban Waste Water 

Treatment Directive 91/271/EEC) 

Parameters Discharge Concentration Minimum Percentage Reduction2 

5-Day biochemical oxygen demand 
(BOD5 at 20°C) without nitrification1 

25 mg/l O2 70 - 90 % 

COD 125 mg/l O2 
75% 

TSS 

35 mg/l 3 

 
• 35 mg/l in high mountain regions for 

agglomerations with more than 10,000 PE 

• 60 mg/l in high mountain regions for 
agglomerations whose size falls between 

2,000 and 10,000 PE 

90 % 3 

 

• 90% in high mountain regions for 

agglomerations of more than 10,000 PE 

•70% in high mountain regions for 
agglomerations whose size falls 

between 2,000 and 10,000 PE 

1. This parameter can be replaced with another parameter: Total Organic Carbon (TOC) or Total Oxygen Demand (TOD) if a  

relationship can be established with BOD5 and the substitute parameter   

2. Reduction relative to influent values.     
3. Requirement Optional 

    

 

 

Table 2: Requirements for discharges from urban wastewater treatment plants to 

sensitive areas (Urban Wastewater Treatment Directive 91/271/EEC) 

Parameters Discharge Concentration Minimum Percentage Reduction1 

TP 
2 mg/l   (10,000 - 100,000 P.E.) 

80% 

1 mg/l   > (100,000 P.E.) 

TN 
15 mg/l (10,000 - 100,000 P.E.) 

70 - 80% 

10 mg/l  >  (100,000 P.E.) 

1. Reduction relative to influent values.     

 

The UWWTD requires secondary treatment of all discharges from agglomerations > 2,000 

PE [6]; consequently €4.6 billion in Irish Exchequer resources have been spent on both the 

waste water sector to ensure compliance with the UWWTD and also to deliver quality 

drinking water to the Irish public [7].
 
 As a result, secondary treatment for agglomerations > 

2,000 PE now stands at 92%, compared to 25% in 2000 [7].
 
 However, according to a recent 

Environmental Protection Agency (EPA) report [8, 9], only 69% of Irish WWTPs with 

secondary treatment are meeting the minimum effluent quality standards (i.e. BOD, COD) set 
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out under UWWTD. Additionally, 44 (26%) of the 170 large urban did not comply with the 

European Union quality standards for such areas.  

 

The treatment of waste water generally can be divided into mechanical, biological and sludge 

treatment, with the selection of a waste water treatment process or sequence of processes  

dependent on a number of factors summarized below [10]:  

 Characteristics of influent waste water (BOD, COD, pH etc.) 

 Effluent quality required 

 Cost and availability of land 

 Consideration of possible future upgrading of waste water quality standards. 

2.3 Mechanical treatment 

 

Large suspended solids such as pieces of plastic, wood, toilet paper residue and fabric are 

removed through the use of screens. The sewage then flows into a grit chamber, where 

minerals such as gravel and sand are separated by sedimentation. The sewage then passes into 

large sedimentation tanks where the majority of the solids, known as primary sludge, settle to 

the bottom in a process known as primary clarification.  

2.3.1 Biological treatment 

 

Biological treatment is achieved by microorganisms consuming organic matter; it involves 

the manipulation of oxygen conditions to grow specific types of bacteria to consume organic 

matter. There are three different methods of biological treatment, detailed as follows: 

 Aerobic Treatment – Dissolved oxygen is present in this process with aerobic bacteria 

utilising oxygen in the tank provided by aerators. The main products of this process 

are biomass, carbon dioxide and water. 
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 Anaerobic Treatment – Dissolved oxygen is not available, but anaerobic bacteria can 

utilize the oxygen bound in sulphate to breath. The main products of this process are 

hydrogen sulphide, carbon dioxide and water. 

 

 Anoxic Treatment – Dissolved oxygen is not available, but anoxic bacteria can utilize 

the oxygen bound in nitrate to breath. The main product of this process is nitrogen 

gas. 

WWTP managers can utilise any number of the processes detailed above when designing 

their biological treatment systems. Clearwater WWTP in Florida for example operates a 5 – 

stage Bardenpho process consisting of anaerobic zone followed by two anoxic and anaerobic 

zones [11]. The second anoxic zone provides an opportunity to denitrify the nitrates created 

in the aeration zone, allowing lower total nitrogen effluent concentrations. 

2.3.2 Activated Sludge Process 

 

The activated sludge process is a biological treatment process where air is introduced to 

waste water to produce a biological floc. The floc then settles to the bottom of the aeration 

basin enabling it to be removed from the process and thus reducing the organic content of the 

waste water. This clarified effluent is categorised into two categories: 

 Return activated sludge 

 Waste activated sludge. 

Return activated sludge is re - introduced to the beginning of the process through a sludge 

recycling system as they are very efficient at digesting organic matter in the aeration basin. 

Excess solids and organisms removed from the process are referred to as waste activated 

sludge.  
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2.3.3 Sludge treatment 

 

Following biological treatment, the waste water flows to secondary settlement tanks where 

the majority of biological solids are deposited as sludge while the clarified effluent passes to 

the outfall pipe for discharge. If aerobic treatment of organic matter is being utilised in the 

plant, a portion of the sludge is returned to the inlet of the aeration tanks to reseed the new 

waste water entering the tank. Typically, sludge is thickened to reduce its volume and 

transported off-site for disposal. Alternative methods such as incineration, anaerobic 

digestion and land application can also be utilised.   

2.4 Irish waste water treatment sector 

 

Municipal waste water treatment in Ireland is provided by small treatment plants distributed 

throughout the country. Approximately 66% of municipal WWTPs in Ireland have a PE of 

less than 2,000, while only 12% (65) of Irish WWTPs have a PE of greater than 10,000 [12]. 

Irish Water has recently been established to amalgamate the water and waste water services 

of the 34 Local Authorities under one national service provider. Prior to January 2014, waste 

water services within Ireland had been provided by these 34 Local Authorities. This led to a 

large degree of division in the provision of services, with this division hindering the 

standardisation of procedures and technology [13]. The recent economic crisis has led to 

increased pressures on local authorities to deliver services, for example local authorities such 

as Limerick County Council saw a 3% decrease in overall budget expenditure while 

expenditure for the operation and maintenance of WWTPs in Limerick increased by 3% 

between 2012 -2013 [14].  

 

The majority of energy consumption in municipal WWTPs is associated with the secondary 

treatment process [15] (Figure 1), with approximately 90% of WWTP utilising the activated 

sludge treatment process in Ireland [16]. According to the United States (US) Environmental 
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Protection Agency (EPA), aeration and waste water pumping typically consume 68% of 

electrical energy usage within the activated sludge process (Figure 1). This would suggest 

that WWTP plant managers should therefore focus on efficient operation of their aeration and 

waste water pumping systems by using a combination of more energy efficient retrofits, 

effective process control, pro-active equipment maintenance and good operational practice.  

 
Figure 1: Electricity requirements for Activated Sludge Waste Water Treatment [15] 

 

2.5 Good practice guide for WWTP equipment 

2.5.1 Aerators  

 

Waste water aeration accounts for up to 54% of electrical energy usage within the activated 

sludge process [15]; therefore WWTP plant managers should spend a significant amount of 

time monitoring, characterising and optimising their aeration system as significant energy 

savings opportunities exist. Within the activated sludge treatment process, micro -organisms 

degrade organic matter converting it into carbon dioxide, water and biomass. As these micro-

organisms require oxygen to survive, air is introduced to the system through a number of 
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methods. Mechanical aerators introduce air to the system by agitating the waste water surface 

with either blades or propellers. Alternatively, waste water can be aerated by bubbling air or 

high purity oxygen through it from below. Cantwell et al. [17] estimated that aeration energy 

consumption can be reduced by up to 40% by retrofitting mechanical and coarse bubble 

aeration systems with fine bubble diffused aeration systems. Fine bubble diffused aeration 

systems support higher oxygen transfer rates due to in an increase in bubble surface area per 

unit volume of fine bubbles over coarse bubbles [18].However, fine bubble diffused aeration 

systems require more routine cleaning and are more prone to plugging leading to an increase 

in maintenance costs.  Killarney WWTP replaced mechanical rotor aerators with fine bubble 

diffused aeration systems reducing the power demand in the aeration ditch from 45 kW to 

less than 15 kW, as reported in a study of both Killarney and Dingle WWTPs [19]. The 

installed fine bubble diffused aerators have a payback period of two years with respect to the 

initial capital investment. In order for the aeration system to address real time operating 

conditions within the plant, aeration control strategies should be implemented.  However, 

biological treatment of waste water is not a simple process; appropriate aeration control is a 

balance between energy efficiency and effective waste water treatment. 

 

2.5.2 Control Systems 

 

The most frequently used control variable in the WWTP industry is Dissolved Oxygen (DO) 

[20, 21]. Through the use of automatic control systems, DO levels can be adjusted to real-

time process requirements, thus reducing aeration blower energy consumption requirements 

[22]. DO control systems build flexibility into a WWTP’s aeration system, by adjusting the 

oxygen requirements to the real time variable conditions within its aeration basin [23]. One of 

the most common DO control systems is the cascade feedback control system, illustrated in 

Figure 2 below [24].  
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Figure 2: DO cascade feedback control diagram [24] 

 

To achieve specific DO set points the airflow in the tank is constantly manipulated; this is 

achieved through the use of a Proportional, Integral and Derivative (PID) controller 

[24].Olsson [25] noted that the use of PIDs is only one approach to achieve specific DO set 

point control, other methods such as genetic algorithm and fuzzy logic control can be used, 

but not much evidence exists to suggest they are more effective than PIDs. The US EPA 

undertook a series of control tests demonstrating energy savings of approximately 40% can 

be obtained by using automated dissolved oxygen control over manual control [21]. Although 

biological oxygen demand within the aeration basin varies with the proportion of organic and 

ammonia loading in the influent waste water [23], variations in DO and ammonia levels 

within the WWTP basin should also be considered.  Over aeration can increase energy costs, 

while under aeration leads to problems such as poor sludge settling and an increase in the 

number of filamentous organisms [23]. Therefore, multiple DO sensor zones with 

independent air supply for each zone reduce energy consumption by matching the airflow to 

the DO needs for that particular zone [26]. When placing the sensor within the zone, areas 

that experience instability should be avoided as hunting problems in the control system could 

be represented in the measured value from the sensor [27].  

2.5.3 Pump Energy 

 

Waste water pumping accounts for up to 14% of electrical energy usage within the activated 

sludge process [15], second only to aeration. Within the plant, pumps are used to transport 
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waste water and sludge between the various treatment processes. Operating conditions within 

the WWTP greatly affect overall WWTP pump efficiency [28], inefficiencies arise when 

pumps are expected to operate over a wide range of conditions.  Additional losses may occur 

if pumps are sized for peak flow conditions that occur infrequently, therefore the pump will 

not operate at its Best Efficiency Point (BEP)
1
. Signs of an inefficient pumping system are 

detailed below in Table 3 [23].  

Table 3: Inefficiencies associated with pump systems [23] 

Signs of an inefficient pumping system include       

1) Highly or frequently throttled control valves       

2) Bypass line (recirculation) flow control         

3) Frequent on/off cycling           

4) Cavitation noise at the pump or elsewhere in the system     

5) A hot running motor           

6) A pump system with no means of measuring flow, pressure, or power 

consumption 

7) Inability to produce maximum design flow       

2.5.4 Variable Frequency Drives  

 

As waste water pumps experience a large variation in diurnal flow, Variable Frequency 

Drives (VFD) can be applied to WWTP pumps and blowers to manipulate their speed to 

match waste water flow conditions. VFD alter the frequency of the input signal to the motor, 

by controlling this frequency the speed of the motor may be regulated (Figure 3). Numerous 

alternative methods such as stop/start control, throttling valves and bypass control may be 

used to control waste water flow, all of which are detailed in Figure 3.  Stop/start control is 

symptomatic of an over - sized pump that matches flow. Throttling valves move the operating 

point on the pump’s curve to the left, thereby reducing flow.  Bypass control returns a 

percentage of the water pumped back to the suction side of the pump, wasting a percentage of 

the energy used to recirculate the water with no beneficial work achieved. VFD are the most 

efficient method to control waste water flow (Figure 3) [29]. The energy savings potential of 

                                                 
1
 BEP is the flow rate and head that gives the maximum efficiency on a pump curve 
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VFD was reported in a study carried out at Dingle WWTP where a fine bubble diffused 

aeration system was coupled to a low speed variable output blower, reducing energy 

consumption within the plant by 37% [19]. However, VFD are not applicable in all situations, 

for example, when a large ratio of static to dynamic head exists. 

 

 
 

 

Figure 3: Wasted Energy in Alternative Control Schemes Compared to Variable 

Frequency Drives [29] 

 

 

2.6 New Energy Efficient Technologies 

2.6.1 OxyMem 

 

The OxyMem Membrane Aerated Biofilm Reactor (MABR) is a secondary treatment system. 

As the waste water travels through the OxyMem MABR the organic matter is consumed by 

biofilm cultures that live on the membranes inside the reactor. This enables oxygen to be 
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transferred directly to the bacteria resulting in oxygen transfer efficiency rates of up to 99%, 

leading to a reported direct reduction in operating costs of up to 75% [30]. It is important to 

note that a whole life cycle costing should be carried out on the OxyMem MABR to take into 

consideration such issues as membrane cleaning etc. 

2.6.2 Anaerobic Ammonium Oxidation 

 

Anaerobic Ammonium Oxidation is an ammonium removal technology, developed at Delft 

University of Technology. The initial step in the process is partial nitrification of half of the 

ammonium to nitrite by ammonia oxidising bacteria. A growth rate exists at higher 

temperatures where ammonium is oxidised but nitrite is not converted; both processes can 

take place in the one reactor. This results in the ammonium and nitrite being converted into 

dinitrogen gas [31]. In anaerobic ammonium oxidation systems, oxygen demand is greatly 

reduced by up to 50% as only half of the ammonium needs to be oxidised to nitrite, as 

opposed to full conversion to nitrate [11].  

2.6.3 Pumped Flow Biofilm Reactor 
 

The Pumped Flow Biofilm Reactor (PFBR) is a two reactor technology that enables aerobic, 

anoxic and anaerobic conditions to be sequenced. Biofilm grow on plastic media modules 

within the two reactors. The two reactors empty and fill a numerous times during a typical 

aeration sequence, exposing the biofilm to atmospheric air and waste water [32]. Operational 

costs of the PFBR have been shown to be 66% less than the conventional activated sludge 

system [33].  

2.7 Sustainable Energy Efficiency 
 

An ad-hoc approach to energy efficiency within WWTPs leads to initial savings that address 

immediate energy problems within WWTPs. In order for sustained savings to be achieved a 
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cohesive and consistent approach is needed and therefore a spirit of energy efficiency needs 

to be fostered within the plant. 

2.7.1 Energy Audit 

 

A key step in establishing the baseline energy usage within a WWTP is an energy audit; from 

which future energy efficiency improvements can be measured. An energy audit is an 

inspection and analysis of energy usage within a facility [34].  An audit identifies energy use 

patterns, the potential for energy and cost savings, and can include recommendations for 

actions to improve energy efficiency and reduce energy costs [35]. Energy audits identify 

potential capital improvements such as retrofits (motors, blowers etc.) and operational 

improvements such as operation time of equipment. 

 

Plant operation data in conjunction with waste water parameters such as BOD and TN can be 

used to establish the various operating seasons of a WWTP [36]. The seasons reflect 

variances in infiltration rates in the water collection system and temporary changes in 

population (i.e. schools). Once operating seasons are established, measurements of influent 

plant load should be taken to benchmark plant energy usage.  

 

The conditions and seasonal variations in Irish WWTP load are summarised below [37]:  

• Season 1 (October – March): High flow, High load (BOD, TN etc.), and low wastewater 

temperature 

• Season 2 (April – June): Average flow, average load, and low wastewater temperature 

• Season 3 (July – September): Low flow, low load, and higher wastewater temperature. 
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2.7.2 Types of Audits 

 

An energy audit of a WWTP can take many forms; the American Society of Heating, 

Refrigerating and Air-Conditioning Engineers (ASHRAE) have developed 3 levels of energy 

audits [38]. The variations in these audits are seen through their intricacy, level of analysis 

and quantity of information the audit can provide. Audits range from Level 1 (Walk though) 

to Level 3 (Process Audit); they are detailed below in Table 4. 

 

Table 4: Levels of ASHRAE Energy Audits [38] 

(ASHRAE Level I) - Walk Through 

Audit           

• Duration: Several hours in the 

facility           

• Proposal: Suggestions for low cost improvements to lights/HVAC     

• Results: Quick payback projects that take advantage of utility 

rebates     

(ASHRAE Level II) - Energy Survey and 

Analysis         

• Duration: Several hours in facility plus additional time to review energy bills, etc. 

• Proposal: Suggestions for low cost improvements to lights/HVAC and equipment  

upgrades in existing processes (e.g. VFD, premium efficiency 

motors)     

• Results: Quick payback projects that take advantage of utility 

rebates     

 (ASHRAE Level III) - Process Energy Audit         

• Duration: One or more days in the facility, time to analyse energy bills, 

develop    

 pump curves, and possibly several weeks of data 

gathering       

• Proposal:               

–        Energy use in existing processes, alternative 

processes       

–        Potential design modifications           

–        Optimization of processes, equipment, design modifications     

• Results: Detailed operational and process suggestions with both short and long pay 

backs  
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Table 5, detailed below, provides an example of an ASHRAE level 1 audit where equipment 

inventories are used to categorise the horsepower of plant equipment, usage and control type 

in place. 

 

Table 5: ASHRAE Level 1 Audit [36] 

 

Equipment 

Type  
Quantity  Horsepower Usage Control  

Mechanical 

Aerator 
1 90 Continuous  

Variable Frequency Drive 

(VFD), manual adjustment 

Blowers 1 20 Intermittent Fixed Speed 

Mixer 1 4 Continuous  Fixed Speed 

Influent Pump 

(No. 1 & 2) 
2 15 Continuous  VFD, speed based on flow 

Influent Pump 

(No. 3) 
1 5 Back Up VFD, speed based on flow 

Centrifuge 1 50 
30-40 hrs. 

/week 
VFD, fixed speed 

2.7.3 Energy Management System 

 

An energy audit is the initial component of a continuous process known as an Energy 

Management System (EMS). An EMS is a critical management tool that “clearly articulates 

the measures that are, or will be, deployed by a department to reduce its energy consumption” 

[39]. An EMS is an example of an operational improvement that could be implemented in a 

WWTP.  

 

The EMS is a relatively new approach to energy auditing where sustained savings is the main 

objective. In order to achieve sustained savings a real commitment is necessary from all 

parties in an organisation.  
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2.7.4.1 Key performance indicators (KPI) 

 

An instrumental aspect of an EMS is its use of Key Performance Indicators (KPI). KPI help 

an organization identify and appraise progress toward organizational goals. Once an 

organization has identified the various stakeholders and defined its goals, it needs a process 

to measure progress towards these goals. Key performance indicators are these 

measurements.  

 

The main KPI for assessing the efficiency of waste water treatment can be allocated to a 

number of areas of focus or pillars [40, 41]. KPI applicable to waste water treatment are 

illustrated below in Table 6: 

 

Table 6: Main KPI associated with waste water treatment plant efficiency [40, 41] 

Area of focus Sections   Key Performance Indicators       

Customer Service • complaints • complaints in relation to waste water disposal per service connection 

    • service Quality             

    • public Relation             

Sustainability • resource protection • specific energy consumption per waste water disposal [kwh/PE] 

    • resource consumption • energy production rate [%]       

    • staff & social criteria • conservation of value ratio (waste water collection and transport) [%] 

Economic 

Efficiency • cost transparency • specific total waste water disposal expenditure [€/PE]   

    • cost analysis • specific capital costs of waste water disposal [€/PE]    

    • investments • specific total revenue of waste water disposal [€/PE]    

    • staff               

Reliability  • reliability disposal • average sewer age          

    • facility utilisation • 85% percentile degree of utilisation of waste water treatment plant [%] 

    • central monitoring • reactive maintenance ratio - unplanned maintenance hours to  

    • fault monitoring planned maintenance hours [%]       

    • maintenance             

 

Table 6 is focused on four pillars of WWTP efficiency, the KPI assess the sustainability, 

customer service quality, reliability and economic efficiency of WWTPs. KPI in relation to 

the environmental performance of WWTPs could also be considered. Instruments such as 



 

20 

WWTP discharge requirements and influent COD, BOD etc. percentage removal rates could 

be used to assess the environmental performance of WWTPs 

2.7.4.2 KPI Benchmarking of WWTPs 

 

KPI provided the platform for the Austrian benchmarking system to be established. Its initial 

objective was to develop KPI and best practice guidelines for the operation of WWTPs.  

Plants were benchmarked for yearly total, capital and operating costs based on compliance 

with a number of criteria detailed below:  

 Austrian emission standards 

 Minimum quality of technical data 

 Available operating and yearly total costs. 

 

Data was acquired from the plants through an internet platform, enabling technical and 

financial data to be processed. During the processing stage plausibility checks were 

conducted, with KPI for cost categories and processes also calculated for each plant. 

Currently, over 40% of WWTPs in Austria upload information via the internet platform to the 

benchmarking system [42]. A decline in specific operating costs with increasing plant size 

was observed; in additional, and importantly, no correlation between treatment efficiency and 

operating costs could be found, with excellent treatment efficiency often achieving the lowest 

specific costs [42].  

2.7.4.3 Deming cycle – (Plan-Do-Check-Act) 

 

Although KPI enable an organisation to measure progress towards goals, this is not sufficient 

unless a system is in place which implements and maintains progress. Approaches such as the 

Deming cycle can help in this respect. The European standards in relation to EMS are based 

on the methodology known as Plan-Do-Check-Act system (Figure 4); the system provides a 
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communication mechanism between plant managers and upper management, thus 

incorporating important stakeholders in energy management activities [43]. It can be 

described as follows [44]: 

- Plan: establish the goals and processes necessary to achieve results in accordance with 

the organizations energy policy. 

- Do: implement the process. Often on a small scale if possible. 

- Check: monitor and measure processes against energy policy, objectives, targets, legal 

obligations and other requirements to which the organization subscribes, and report 

the results. 

- Act: take actions to continually improve performance of the energy management 

system.  

 
Figure 4: Deming Cycle - Focused on continual improvement [38] 
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2.8 Life cycle analysis 
 

Following the introduction of the UWWTD, an increased focus was placed on the 

environmental performance and footprint of WWTPs. Life Cycle Analysis (LCA) is a cradle–

to–grave approach that quantifies the environmental cost at every stage of a product’s life; 

From the energy needed to extract the product’s raw materials, to the use and eventual 

disposal or recycling of the product. WWTP consume electricity, chemicals and numerous 

other resources, while concurrently emitting pollutants to water, soil and air. LCA holistically 

examines all environmental impacts from a WWTP. Although LCA can be used to 

benchmark the resource efficiency of WWTPs, the compilation of a Life Cycle Inventory and 

subsequent impact assessment, provides only a certain amount of meaningful data. It is not 

necessary to make comprehensive inventories as the impact classifications are very sensitive 

to few compounds released in large quantities. Thus, to obtain useful data a limited number 

of indicators should be selected. [45]  Alternative methods can be used to benchmark the 

resource efficiency of a WWTP; exergy analysis has been advocated as a useful tool for 

WWTP characterisation through the quantification of system irreversibilities.  

2.9 Exergy analysis of WWTP 

 

The US EPA reported that local governments allocate up to 10% of their annual operating 

budget on energy [46] and with WWTPs in the US accounting for 3% of the electrical load 

[1], energy efficiency within WWTPs is essential. Additionally, the US EPA states energy 

consumption for waste water treatment systems is expected to rise by 20% by 2020 [47].  

Energy is vital in all steps of a WWTPs treatment process, from the collection of raw sewage 

to the discharge of treated effluent. Exergy analysis has been identified as an important tool 

in the analysis of thermal and chemical processes [5]. However, to date, this approach has 

seldom been applied to the study of WWTP optimisation. Exergy is a thermodynamic 
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property, which combines the first and second law of thermodynamics, and can be defined as 

the maximum theoretical work obtainable as two systems interact to equilibrium [2]. By 

conducting an exergy balance across plant processes, the exergy destruction in each process 

can be quantified, and in turn used to focus energy efficiency efforts. Several researchers 

have used this approach to identify inefficiencies in thermal and chemical systems [3, 4]. 

Furthermore, exergy analysis can be used to quantify the work potential of waste streams. In 

WWTPs the generation of waste streams is unavoidable and exergy analysis may provide 

invaluable insight into their potential to do useful work. Exergy analysis can therefore be 

used to quantify waste streams enabling informed design decisions with regard to 

optimisation of WWTPs. 

 

Initial works by Tai et al. [48] related the chemical exergy of organic matter to waste water 

indices Total Oxygen Demand (TOD) and Total Organic Carbon (TOC). In recent years 

exergy analysis has been applied to the quantification and optimisation of the environmental 

performance of a WWTP [49], it has also been used to quantify chemical exergy assessment 

of organic matter in water flow [50].  Hellström [51] showed that exergy analysis can be used 

to estimate the flow and consumption of physical resources within WWTPs. 

 

The objective of this research is to conduct exergy analysis on several WWTPs, quantifying 

the exergy content or work potential of process streams. Consequently, a hierarchy of WWTP 

processes and plants with the greatest exergy destruction will be established, with exergy 

destruction rates being utilised to benchmark plant performance.  
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2.9.1 Total Specific Exergy 

 

Martinez et al. [50], proposes the following approach to calculate the total specific exergy 

(bT) of a waste water body. The total specific exergy (bT) of a waste water is defined by six 

variables, characterizing its thermodynamic status: temperature, pressure, composition, 

concentration, velocity and altitude [52]. Each variable is associated with its corresponding 

exergy component: thermal (bt), mechanical (bm), chemical (bch), kinetic (bk) and potential 

(bz). The model assumes an approximation to an incompressible liquid. The total specific 

exergy (bT) of a waste water is defined in Eq. (1) below: 

 

 
 

Assumptions of incompressible fluid with a constant specific heat capacity have been made 

in Eq. (1). Table 7 below provides a definition of terms and their units for Eq. (1).  

 
 



 

25 

Table 7: Symbols & Subscripts for Total Specific Exergy Equation 

  

As the majority of WWTPs operate isothermally, thermal exergy is negligible. Mechanical 

exergy is also negligible as pressure changes within WWTPs are not significant. Potential 

exergy is often also insignificant, depending on plant configuration. Therefore, when 

calculating the total specific exergy (bT) of a waste water body, it is sufficient to focus on its 

chemical exergy component. The total chemical exergy (bch, T) component combines two 

chemical exergy components: formation (bch, f) and concentration (bch, c) exergy which are 

detailed in Eq. (2):   

 

                                     (2)                                                                

2.9.2 Reference environment 
 

The chemical exergy of a substance is dependent on the environmental model that is selected 

as its Reference Environment (RE). The RE from a technical perspective should be as close 

as possible to the natural environment [53]. Therefore, when defining the RE for a WWTP its 

composition should be close as possible to that of its receiving waters. This is in contrast to 

the Szargut RE, where he defined a reference substance for every element in the 

Symbols

a activity Subscripts

b specific exergy (kJ/kg) ch chemical

c velocity (m/s) ch,c chemical (concentration)

c p, H20 specific heat capacity of water (kJ/kg K) ch,f chemical (formation)

g gravitational acceleration of the earth (m/s
2
) e each element forming the substance i

m mass (kg) H2O water

n mole number (mol/kg) i any considered substances

p pressure (kPa) k kinetic

R universal gas constant (kJ/kg K) m mechanical

T temperature (K) o under reference conditions

v specific volume of the aqueous solution (m
3
/kg) p under ambient conditions

x molar fraction of the substance i in the solvent t thermal

y relative molality (kmol/kg) T total

z height (m) z potential

∆Gf Gibbs free energy (kJ/kmol)

b(kJ/kg)  Σi [yi(∆Gf + Σnebch)] + [RToΣxi lnai/ao]

bch,T

=
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environment; the exergy of other substances may be then calculated by means of a balanced 

chemical reaction between the specific substance and its reference substances [54]. 

 

If a substance is not contained within the defined RE, its formation chemical exergy is the 

only component considered and is calculated by Eq. (3) detailed below [55]: 

 

bch, f = Σi [yi (∆Gf + Σnebch)]                                                                                                     (3) 

 

This is the equation to calculate the chemical of a compound, ∆Gf is the formation of Gibbs 

energy of the ith element, ne is the amount of kmol of the element e in the compound i and 

bch is the standard chemical exergy of the element e.  

 

If a substance is already contained within the defined RE its concentration chemical exergy is 

the only component required and is calculated by Eq. (4) detailed below: 

 

bch, c = [RToΣxi lnai/ao]                                                                                                             (4) 

 

Xi is the molar fraction and ai and a0 are the activity coefficients of substance i in the water 

sample and in the RE. The activity of each substance can be calculated by applying the Eq. 

(5): 

 

ai = ϒi .mli                                                                                                                               (5) 

 

ϒi the activity coefficient and mli is the molality of the ith substance. The activity coefficient 

is calculated by applying the Debye–Hückel Theory [56] which explains the unexpected 

behaviour of electrolyte ions in a dilute solution by considering their electrostatic 

interactions. The Debye–Hückel Theory applies only to electrolytic solutions; other activities 
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that are non-electrolytic in nature can exist in the mixture. Additionally, Fitzsimons [57] 

demonstrated that the Debye–Hückel Theory is relevant for very low molalities.   

 

Martinez et al. [55] analysed a number of different RE scenarios in calculating the chemical 

exergy of river water, in particular: 

 Sea water without organic matter and nutrients 

 Sea water with organic matter and nutrients 

 A completely degraded RE, with very high organic matter and nutrient concentrations 

 Pure Water.  

 

As the final discharge location for Martinez’s river case study is located in the eastern 

Spanish coast, sea water without organic matter was chosen as the RE. Pure water and the 

completely degraded RE models were easily discarded as they are not representative of the 

rivers final discharge location in that case. Sea water with organic matter and nutrients was 

also discarded as only trace elements of nutrients and organic matter exist in sea water. The 

reference environment analysis carried out by Martinez is more of a dead state choice than a 

defined RE as defined by Szargut [54]. Chen and Ji utilised an indicator called specific 

relative chemical exergy with reference to a range of substances when assessing water 

quality. This method was again in contrast to the Szargut [54] approach with chemical exergy 

based on global reference substances.  

 

When analysing the RE for a WWTP its discharge location impacts greatly on the selection 

of a suitable RE. For example, a WWTP discharging to an inland river would have a 

significantly different RE than a WWTP discharging to the sea. Therefore, two different REs 

are defined for WWTPs below. 



 

28 

2.9.2.1 WWTP discharging to inland rivers  
 

Nutrients and organic matter have higher concentrations in river water than in sea water and 

thus they are included in the RE as they are representative of the real environment. Therefore, 

the RE for a WWTP discharging to inland rivers is defined as: river water containing organic 

matter and nutrients (Table 8) [58, 59] .  If organic matter and nutrients are not included in 

the defined RE their exergy contribution will be their composition chemical exergy. If this 

option is selected the exergy value of nutrients and organic matter is increased when 

compared with the defined RE. Clearly, pure water and any form of sea water are non-

realistic REs for WWTPs discharging to inland rivers.   

 

Table 8: RE for WWTPs discharging to inland rivers 

 
 

2.9.2.2 WWTP discharging to the sea  
 

The RE for WWTPs discharging to the sea will have identical characteristics to that of rivers 

whose final discharge location is the sea [55]. The defined RE is found several kilometres 

from the coast where complete mixing of waste water and sea water has occurred. Therefore, 

as previously detailed above the RE is defined as: sea water (Table 9) 

 

Table 9: RE for WWTPs discharging to the sea 

 
 

The chemical exergy of disinfectants in this research are calculated with the above 

methodology. For example, a disinfectant such as sodium hydroxide is clearly not contained 

within either RE detailed above; therefore the formation exergy component will be used 

when calculating its chemical exergy. 

RE - River Discharge Cl HCO3 K Mg Na SO4 Ca Fe SiO2 PO4 NH3 NO3

ppm 6.9 95 1.7 5.6 5.4 24 31.1 0.8 7.5 0.03 0.083 1.46

RE - Sea Discharge Cl HCO3 K Mg Na SO4 Ca

ppm 19,345 145 390 1,295 10,752 2,701 416
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In the context of this work, only one input component to WWTP plant A was calculated 

using an RE scenario (Table 9) as detailed above. This is due to the organic nature of the 

WWTP process inputs and outputs. 

 

2.9.3 Organic matter calculation methodology 
 

Tai et al. [48] established a relationship between the standard chemical exergy of a 138 

organic compounds and the organic matter parameter TOD and TOC, as indicated below by 

Eqs. (6) and (7): 

 

bch (J/l) = 13.6 (kJ/g) x TOD (mg/l)                                                                                         (6) 

 

bch (J/l) = 45 (kJ/g) x TOC (mg/l)                                                                                            (7) 

 

Tai stated that it is very difficult to identify and determine every organic compound found in 

waste water. Therefore, he selected a reference substance to calculate the chemical exergies 

of the atmospheric gases, allocating zero exergy to several stable chemical compounds.  He 

then conveniently expressed a generic organic compound as CaHbOc [55] and plotted 

theoretical TOC and TOD against chemical exergy to develop linear best fit equations to 

obtain Eqs. (6) and (7).  

 

As it is difficult to determine the composition of organics in waste water, certain practical 

limitations exist when using the method proposed by Tai et al. to calculate the chemical 

exergy of organic compounds. In order to tackle this issue, Martinez et al. [55] proposed that 
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the analyses may be divided into measurements of aggregate organic matter greater than 1.0 

mg/l and trace concentrations ranging from 10
–12

 mg/l – 1.0 mg/l. 

 

Tai stated that organic matter parameters BOD and COD could also be used as approximate 

measures of effective energy, as TOD indirectly represented the magnitude of utilisable 

energy from wastewater. However, alternative methods exist for the measurement of organic 

matter parameters listed above. For example, potassium dichromate or potassium 

permanganate can be used to chemical oxidise organic matter, thus allowing COD to be 

quantified.  Tai et al. [48] noted that the BOD and COD (permanganate) relationship with 

TOD is not as strong as the COD (dichromate) and TOD relationship. Tai et al. used 

theoretical values of TOD and TOC when developing Eqs. (6) and (7); therefore analysis 

should be conducted on how closely theoretical values of organic matter parameters relate to 

measured values for these substances. 

 

A clear link exists between theoretical TOD and measured COD (dichromate), with an 

equivalence ratio of 95% demonstrated by Moore et al. [60]. Hellström [51] suggested that 

BOD is the most reliable indicator of available exergy within waste water because it 

represents the amount of easily biodegradable organic matter. However, he did not 

demonstrate how measured values of BOD relate to the chemical exergy of organic matter. 

Martinez [50] demonstrated that using the COD and BOD parameters provided coherent 

results when compared with TOC in calculating the chemical exergy of organic matter in 

surface waters as opposed to waste waters.  

 

Khosravi et al. [49] identified potential limitations with the Tai approach because typical 

compounds found in WWTP were not included in the development of the correlations. 
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Khosravi et al. [49] proposed that theoretical TOD could be used to estimate the chemical 

exergy of organic matter in waste water, as indicated below by Eq. (8): 

 

bch (J/l) = 13.7 (kJ/g) -116 x COD (mg/l)                                                                                (8)       

  

Khosravi et al. carried out an exergy analysis of a WWTP in Qod, Iran.  Khosravi et al. [49] 

provides COD values for all organic matter inputs and outputs in their process exergy 

analysis. (Note that these are not the same chemical exergy values determined by Tai, 

however, the different approaches used to calculate the chemical exergy result in similar 

values for the majority of the elements under consideration). Two different approaches have 

been proposed, it is important to see how they differ in terms of calculating the chemical 

exergy. In order to achieve this, the two approaches have been compared in Table 10. 

The first column of Table 10 takes a random sample of COD input/output values from the 

Khosravi et al. paper.  The obtained COD value is multiplied by 13.6 (Eq. (6)) and then the 

WWTP flow to obtain the exergy values in column 2. Column 3 details the exergy values of 

organic matter obtained by Khosravi et al. using Eq.8 above and then multiplying it by the 

flow.  As you can see little difference exists between the two methods. 

 

Table 10: Comparison of organic matter exergy values using COD and THOD organic 

matter measurement parameters 

COD value (mg/l) Tai COD Exergy 

Method (GJ/Day) 

Khosravi THOD Exergy 

Method (GJ/Day) 

% Difference 

371.1 227.11 224.4 1.19 

204.1 124.21 121.07 2.53 

6800 23.12 23.35 - 0.99 

260.7 158.76 155.3 2.18 

 

As theoretical TOD signifies the quantity of oxygen required to oxidise a compound to its 

final oxidation products, it represents an unrealistic and worst case scenario of oxygen 

requirements.  The actual oxygen demand of any organic compound is its biodegradability; 
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but as no clear link has been established with BOD and theoretical TOD, COD (dichromate) 

will be used to estimate the chemical exergy of organic matter in waste water in this research. 

The chemical exergy of sludge, return liquors and mixed liquor suspended solids in this 

research will also be calculated by Eq. (8), indicated below: 

 

bch (J/l) = 13.6 (kJ/g) x COD (mg/l)                                                                                         (8) 

 

The numerous chemical exergy calculation models are detailed below in Table 11.  

 

Table 11: Relevant/Specific Waste Water Chemical Exergy Equations 

Relevant/Specific Waste Water Chemical Exergy Equations   Source 

e = n[u
o
 - uo

o
 + R To lnc/co]       [51, 55, 61, 62] 

              

e =  Σi [yi(∆Gf + Σnebch) + RToΣxi lnai/ao]     [55]  

              

e =  Σi xi ei
ch

+ RToΣxi lnai       [62, 63]   

              

Chemical Exergy of Organic Matter Equations     

e
o
 = 13.6 x TOD         [55] 

            

 e
o 
= 45 x TOC         [55] 

            

 e
o
 = 13.6 x COD         [51, 62] 

            

 e
o
 = 13.6 x BOD         [51, 55] 

            

 e
o
 = 13.7 x THOD - 116        [49] 

 

Extensive further work may be needed to study and compare each of these approaches in 

detail; however, this is beyond the scope of this research. 
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3 Exergy Calculation Methodologies 
 

This chapter outlines the chemical exergy calculation methodology associated with the 

exergy analysis of WWTPs in chapter 4. It provides guidance on how to calculate the 

chemical exergy of process inputs and outputs from WWTP  plant processes. As can be seen 

in Figure 5, WWTPs have numerous waste streams containing differences in the 

concentration of organic matter, sludge, nutrients and coagulants. Other typical inputs include 

electricity usage from compressors, blowers and pumps within the plant.  

I II

III

IV

V VI

Pi

CiBi

Pii

Piii

1 3

4

5

6

7 8

Main WWTP Components

I) Inlet works

II) Primary Clarifier

III) Aeration Tank

IV) Secondary Clarifier

V) Aeration Tank

VI) Secondary Clarifier

Main WWTP Streams

1) Raw Sewage

2) Clarified Waste Water

3) Biologically Treated Waste Water

4) Biologically Clarified Waste Water

5) Return Activated Sludge

6) R.A.S with Ferric Chloride

7) Biologically & Chemically Treated Waste Water 

8) Treated Effluent

Energy Requirements

Pi Pii Piii      Pumps

Ci                    Compressor

Bi                    Blowers

Subsystem 1

Subsystem 2

Subsystem 3

2

 

 

Figure 5: Example of typical process inputs & outputs associated with WWTP 

operation 
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3.1 Wastewater Treatment Plant Selection 

 

Three Irish WWTPs were selected for this research with exergy analyses conducted on all 

three plants.  The characteristics of the selected WWTPs are detailed in Table 12. Plant A has 

a very large PE and discharges its final effluent to the sea. This is in contrast to plants B and 

C, which are of a much smaller scale. Plants B and C utilise similar treatment technologies, 

are of a similar scale and both plants discharge their final effluent to inland rivers. Plants B 

and C enable comparative analysis to be conducted due to their similar characteristics and the 

selection of plant A provides a valuable comparison to differences in discharges 

requirements, PE etc. 

 

 

Table 12: Plant Descriptions  

Plant Design 

Capacity 

(PE) 

Agglomeration  

Served (PE) 

Receiving 

water body 

type 

Level of 

treatment  

Type of 

secondary 

treatment
12

 

A 186,000 79,133 Seawater Secondary AS 

B 12,000 12,284 Freshwater Secondary AS+P 

C 12,000 9,036 Freshwater Secondary AS+P 

 

3.2 Materials and methods 

 

The data used in the study are a combination of measured, site-specific data, and data 

obtained from the literature. The selection, deployment and gathering of WWTP data was 

done by my colleagues on the EPA project Mr Thomas Phelan and Mr Niall Durham.  Table 

13 lists the site-specific data used in the study.  

 

 

 

 

                                                 
1
 AS = Activated Sludge, +P = with phosphorus removal 
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Table 13: Site - specific data used in exergy analysis 

 

Parameter Description 

Volume of wastewater treated m
3
 of wastewater treated 

Chemical oxygen demand The quantity of oxygen required to chemically oxidise all 

organic and inorganic compounds in waste water   

Total nitrogen  See testing section 3.2.1, no inter-process data were available 

Total phosphorus See testing section 3.2.1, no inter-process data were available 

Energy  

Electricity Electricity usage (measured) 

  

Chemicals  

Ferric chloride Ferric chloride used for phosphorus precipitation 

Sodium hydroxide  Sodium hydroxide used for deodorisation 

  

Sludge Monthly average of sludge produced on site 

 

 

3.2.1 Waste water treatment plant testing  

 

Selected WWTPs underwent intensive nutrient concentration testing over a number of days. 

Influent and effluent samples were taken at a maximum of 8 hour intervals in the case of grab 

samples or as daily composite samples where each portion of the sample was collected at 4 

hour intervals. Energy data and power quality data were gathered at intensive frequencies. 

Daily flow data were collected from the respective WWTPs SCADA system or daily logs. 

These testing methods are detailed further in Table 1 of the appendix.  

3.2.2 Testing  

 

TN and TP were analysed using a BioTector TN TP Analyser (BioTector Analytical Systems 

Limited, Cork, Ireland) in accordance with standard methods [64]. COD were measured in 

accordance with standard methods [64]. 

3.2.3 Energy monitoring 

 

Many power/energy monitors will cater for a large range and quantity of variables. 

Conversely, many will not be capable of capturing a comprehensive list of desired variables 

and/or will not be capable of simultaneously monitoring multiple variables. Therefore, the 

http://en.wikipedia.org/wiki/Oxygenation_(environmental)
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specifications of the monitoring equipment play a big role in the scope of an energy audit. 

Table 14 shows the variables monitored in this study. The first column lists the basic criteria, 

wherever possible these variables were recorded. The additional variables allowed for a more 

detailed diagnosis of plant machinery or power characteristics.      

 

Table 14: List of electrical variables recorded in this study including basic variables and 

additional desirable variables 

 
Basic Variables Additional Variables 

Voltage Current Harmonic Distortions (A) 

Current Voltage Harmonic Distortions (A) 

Active Power Frequency (Hz) 

Apparent Power Unbalance (%) 

Reactive Power Dips and Swells 

Power Factor Energy Losses (kWh) 

Phase angle ----- 

Harmonic Distortion ----- 

Neutral Current ----- 

 

 

This detailed diagnosis was performed using the Fluke 435 Series II power quality analyser 

(PQA), which is a high-specification energy analyser. The PQA was supplemented with three 

Amprobe PQ 55A energy analysers. These devices are mid-range cost and specification and 

were capable of recording all basic variables. Finally, smaller plant equipment was metered 

using eight Iso-Tech IPM2005 meters. Although these meters were capable of monitoring all 

basic variables, this could not be done simultaneously. Table 15 outlines in more detail the 

basic specifications of each metering device.  

 

Table 15: Basic specifications for power/energy monitors utilised in plant audits 

Monitor Power Capability Logger  
Sampling 

Freq. (Hz) 

Harmonics     

(up to) 
Coms 

Fluke 453 

Series II 
Mains Single and 3 phase 

SD Card (8 

GB) 
1.3e

-4
 – 4 50th USB 

Amprobe PQ 

55A 
Mains Single and 3 phase 20000 records 8.0e

-3
 – 0.2 31st RS-232 

Iso-Tech IPM 

2005 

Batter

y 

Single and balanced 3 

phase 
8000 records 1.6e

-3
 – 1 n/a 

USB 

optical 
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3.3 Exergy analysis methodology 

 

The basic exergy calculation methodology is detailed below: 

• Quantify the exergy content of process streams, and importantly, waste streams 

• Calculate exergy destruction across plant processes 

• Determine a hierarchy of inefficient processes 

• Identify opportunities to recoup and make use of potential energy sources. 

By analyzing the exergy destroyed in each process in a WWTP, the focus area to improve 

overall system efficiency can be identified. Therefore, it can be used to compare components 

or systems to help make informed design decisions. 

The chemical composition of waste water can be broken down into two separate components:  

 Organic matter containing  hairs, food, paper fibres, plant material, humus etc 

 Inorganic matter containing nutrients, metals, gases etc. 

 

Therefore, the calculation of the chemical exergy of WWTP process inputs and outputs can 

be broken down into two distinct calculation methodologies:  

1) The calculation of the chemical exergy of organic matter including raw sewage, waste 

water, mixed liquor suspended solids, return liquors, return activated sludge and 

sludge. 

2) The calculation of the chemical exergy of inorganic matter including nutrients, metals 

and coagulants.  

 

http://en.wikipedia.org/wiki/Hair
http://en.wikipedia.org/wiki/Food
http://en.wikipedia.org/wiki/Humus
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Now consider a practical example from the exergy analysis of plant A. Table 16 details the 

process inputs & outputs across the pre-treatment works in plant A. Table 16 is displayed 

again on page 44 as Table 19 with the additional treatment processes for plant A. 

Table 16: Process inputs & outputs across the pre-treatment works in plant A 

 

 

3.3.1 Organic matter exergy calculation methodology 

 

The chemical exergy of organic matter is calculated using Eq. (8) below: 

bch (J/l) = 13.6 (kJ/g) x COD (mg/l)                                                                              (8) 

 

 Multiply the COD value (mg/l) of the constituent by the coefficient of 13.6 (kJ/g) and 

divide by a 1000 to obtain the value in kJ/l.  
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3.3.2 Organic matter calculation example 1 

 

 Looking at the first process input in the pre-treatment works from Figure 6 above, the 

chemical exergy of raw sewage with a COD (mg/l) value of 444.73 can be calculated 

as detailed below: 

bch (J/l) = 13.6 (kJ/g) x COD (mg/l) 

bch (J/l) = 13.6 x 444.73 

bch (J/l) = 6,048 (J/l) 

bch (kJ/l) = 6.048 (kJ/l) 

3.4 Inorganic matter exergy calculation methodology 

 

 Sodium hydroxide is not contained within either defined RE above, therefore its 

formation chemical exergy is the only component considered and is calculated using 

(Eq.3).  

 Looking at the second process input in the pre-treatment works from Figure 6 above, 

the chemical exergy of sodium hydroxide can be calculated as detailed below in Table 

16: 

o Obtain the molar mass of the solute (g/mol) and the concentration of the solute 

(g/l, i.e. grams of solute per litre of solution) 

o To convert to the molar concentration (mol/l) of the solute divide the 

concentration of the solute (g/l) by the molar mass of the solute (g/mol) 

o To convert to the standard chemical exergy of the solute (kJ/l), obtain the 

standard chemical exergy value (kJ/mol) from the literature and multiply it by 

molar concentration (mol/l). 
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Table 17: Exergy Calculation of Sodium Hydroxide 

 

 

 

3.5 Exergy Value of Electricity 

 

 Electricity is the fourth process input in Figure 6 above. 

 The first step to calculate the exergy value of electricity in (kJ/l) is to initially divide 

its value in (kWh/day) by 24. So 573 (kWh/day) is simply divided by 24. Then it is 

found by multiplying its 23.88 (kW) value by a time period of a day in seconds (24 x 

60 x 60) and dividing by the daily flow through the plant in litres.  

3.6 Notes 

 

 A limitation of the work is the lack of inter - process nutrient data for all analysed plants 

and the inability to quantify the exergy value of gaseous emissions from the various 

treatment processes. 

 As this data did not exist neither of these components was included in the exergy process 

exergy analyses, however, the nutrients were included in the overall plant analysis. 

 

Exergy analysis was conducted on three WWTP; a brief overview of the specific plant 

characteristics is presented in Table 12.  

 

NaOH   

Molar mass 39.98800 g/mol 
NaOH Concentration 0.00104 g/l 
 0.00003 mol/l 
   
Total Specific Exergy of NaOH 85.56 KJ/mol 

Total Specific Exergy of NaOH 0.0022 kJ/l 
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4 Results  

4.1 Plant A Site Description and Results 

 

This facility has a PE of 186,000.  The inlet works consists of four one metre-wide channels 

for the purpose of screening. Sand and grease are removed from the screened water within the 

pre – treatment building. The plant's biological reactor consists of initial anaerobic treatment 

followed by aerobic treatment. Waste water is pumped from the secondary clarifier to the 

sludge pump station, with return activated sludge pumped to the inlet of the biological 

reactor. The site layout of the plant is detailed below in Figure 6: 

 

Pre – Treatment
Building

Primary Clarifier Biological Reactor Secondary Clarifier

Sludge 
Pump 

Station

Final Effluent

Influent Stream

Return Activated Sludge

Final Effluent

 
Figure 6: Site Layout Plant A 

4.1.1 Calculation Assumptions 

 

• Return liquors, sodium hydroxide and mixed liquor suspended solids are drip fed into 

the WWTP 

• Electricity (kWh/day) usage is split evenly between the pre-treatment building and 

primary clarifier 

• No inter – process nutrient data exists for plant A, nutrient exergy reduction is 

therefore only included in the analysis at the end of the calculations.  

• Nitrogen (kJ/mol) is assumed to exist as the ammonium ion; the chemical exergy 

value of ammonium hydroxide electrolyte has been previously calculated by Szargut. 
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This value obtained from Szargut (kJ/mol) is multiplied by the concentration of the 

component in (mol/l), this provides the exergy value in kJ/l.  

 

Table 18 below provides a breakdown of the measured data across each of the processes 

recorded from the plant A. The table is included for the readers’ ease of reference when 

looking for specific values from plant A. 

 

Table 18: Summary of Plant A's Process inputs and outputs 

 

 

Note: 

 

• The return activated sludge calculation in the aeration basin was determined by 

summating the daily return liquors value (mg/l) taken at the plant and divides it by the 

total days in the month. Samples were randomly taken ten days for the month, it is 

unclear from the data whether return liquors are sent to the inlet of the aeration basin 

daily or just on the days of sampling.  

• The mg/l concentration of the return liquors samples varies from 2000 mg/l to 500 

mg/l over the course of the month, suggesting that the return liquors concentration is 

Process stage Flow type Flow (m3/day) COD (mg/l) TN (mg/l) TP (mg/l)
Energy 

(kWh/day)

Chemical 

exergy (kJ/l)
Work (kJ/l) Total exergy (kJ/l)

Pre-treament (in) Wastewater 27,270 444.73 32.75 - 573 6.05 1.82 13.54

Return Liquors 417.2 5.67

Pre-treatment (out) Wastewater 273.47 3.72 3.72

Primary Clarifier (in) Wastewater 273.47 573 3.72 1.82 5.54

Primary Clarifier (out) Wastewater 153.5 2.09 3.47

Sludge 101.25 1.38

Aeration basin (in) Wastewater 153.5 1306 2.09 4.14 9.35

Return Liquors 229.47 3.12

Aeration basin (out) Mixed Liquors 328.3 4.46 4.56

Wastewater 7.61 0.10

Secondary clarifier (in) Mixed Liquors 328.3 4.46 4.56

Wastewater 7.61 0.10

Secondary clarifier (out) Final Effluent 25,720 34.03 25.91 - 0.46 0.46

Wastewater 39.28 0.53 0.53
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carefully analysed to maintain the balance of microorganisms within the aeration 

basin.  

Tables 19 – 22 detail the exergy values of the process inputs & outputs across each of the 

treatment processes in plant A and the overall exergy destruction across the process. Table 19 

is also displayed as an example on page 38 as Table 16. 
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Table 19: Plant A – Pre Treatment Works 
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Table 20: Plant A - Primary Clarifier 
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Table 21: Plant A - Aeration Basin 
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Table 22: Plant A - Secondary Clarifier 

  

Inlet	&	Outlet	Exergy	of	Secondary	Clarifiers

Exergy	(kJ/l)

MLSS Mixed	Liquor	Suspended	Solids	(mg/l) 328.30

Waste	Water Organic	matter	(COD)	(mg/L) 7.61

Total	Exergy	@	Inlet

Final	Effluent Organic	matter	(COD)	(mg/L) 34.03

Waste	Water	to	SPS Organic	matter	(COD)	(mg/L) 39.28

Total	Exergy	@	Outlet

Total	Exergy	Destruction

Overall	Exergy	Plant	Destruction

Overall	Exergy	Plant	Destruction	including	nutrient	reduction	across	the	plant 20.33

20.24

0.46

0.53

1.00

Process Exergy	Flow

0.10

4.57

3.57

Secondary	Clarifier

Inputs

4.46

Outputs

Final	Effluent

Secondary	Clarifier

Wastewater

Inputs Outputs

Wastewater

MLSS
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4.2 Plant B Site Description and Results 

 

Plant B has a max design PE of 12,000 but is licensed by the Irish EPA to cater for a PE of 

only 9,683. This WWTP comprises of screening, grit removal, three aeration tanks (diffused 

aeration system), two clarifiers, phosphorus removal, sludge thickening and sludge 

dewatering. Storm water storage tanks and a picket fence thickener are also included as part 

of the waste water works. The WWTP discharges to an inland river. The site layout of the 

plant is detailed below in Figure 7: 

 

Clarifier
No.1

Clarifier
No.2

Aeration Basin Aeration Basin

Chemical 
Dosing 

Building

River 
Influent Stream

Return Activated Sludge

Final Effluent

Chemical Dosing

Inlet 
Works

Process Flow

Stormwater Tanks

Anoxic tank with F.S.C

F.S.C

Picket Fence 
ThickenerS.P.S

Sludge Dewatering 
Building

Outfall Pumping 
Station

F.S.C = Flow Splitting Chamber

S.P.S = Sludge Pumping Station

 
Figure 7: Site Layout Plant B 
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4.2.1 Calculation Assumptions 

 

 A 13.57% reduction in organic matter across the pre – treatment works was assumed. 

This figure was obtained from organic matter reductions in eight different waste water 

treatment plants [65].  

 As no inter – process nutrient data exists for plant B, nutrient exergy reduction is 

therefore only included in analysis at the end of the calculations.  

 No inter – process sludge existed for plant B. The sludge output calculation in the 

secondary clarifier was determined by dividing the daily average of sludge out of the 

plant (kg/day) by the daily average of flow through the plant in m
3
/day.  

 The chemical exergy of nutrients (kJ/mol) has been previously calculated by Szargut. 

This value obtained from Szargut (kJ/mol) is multiplied by the concentration of the 

component in (mol/l). Resulting in an exergy value in kJ/l.    

 No return activated sludge line to the inlet of the aeration basin was present on the site 

layout plans was there any mention of return activated sludge on the discharge licence 

application for the plant to the Environmental Protection Agency. It was quite 

possible that activated sludge is returned to the inlet of the aeration basin but the 

figure was not included in analysis for these reasons. Also, this data was not available 

when the analysis was performed. Hence return activated sludge is excluded from the 

analysis.   

Table 23 below provides a breakdown of the measured data across each of the processes 

recorded from the plant B. The table is included for the readers’ ease of reference when 

looking for specific values from plant B. 
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Table 23: Summary of Plant B's Process inputs and outputs 

 

Tables 24 – 26 detail the exergy values of the process inputs & outputs across each of the 

treatment processes in plant B and the overall exergy destruction across the process.  

Table 24: Plant B - Pre - Treatment Works 

 
 

  

Process stage Flow type Flow (m3/day) COD (mg/l) TN (mg/l) TP (mg/l)
Energy 

(kWh/day)

Chemical 

exergy (kJ/l)
Work (kJ/l) Total exergy (kJ/l)

Pre-treament (in) Wastewater 1,848 428.4 71.46 7.66 50.01 5.82 0.097 5.92

Pre-treatment (out) Wastewater 370.34 5.03 5.03

Aeration basin (in) Wastewater 370.34 1312.46 5.03 2.55 7.58

Aeration basin (out) Wastewater 315.83 4.29 4.29

Secondary clarifier (in) Wastewater 315.83 4.29 4.29

Secondary clarifier (out) Wastewater 1,696 104.53 50.06 0.98 1.42 1.42

Sludge 50 0.68 0.68
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Table 25: Plant B - Aeration Basin 

 

 

  

Inlet & Outlet Exergy of Aeration Basin

Exergy (kJ/l)

Waste Water Organic matter (COD) (mg/L) 370.34

Other inputs Electricity (kWh/day) 1,312.46

Total Exergy @ Inlet

Waste Water Organic matter (COD) (mg/L) 315.83

Total Exergy @ Outlet

Total Exergy Destruction

5.0367

4.2953

4.2953

Process Exergy Flow Type & Unit Flow

Aeration Basin

Inputs

Outputs

3.2981

2.5567

7.5934

Waste Water

Electricity

Aeration Basin
Waste Water

Inputs Outputs
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Table 26: Plant B - Secondary Clarifier 

 

  

Inlet & Outlet Exergy of Secondary Clarifiers

Exergy (kJ/l)

Waste Water Organic matter (COD) (mg/L) 315.83

Total Exergy @ Inlet

Final Effluent Organic matter (COD) (mg/L) 104.53

Sludge (mg/l) 50.00

Total Exergy @ Outlet

Total Exergy Destruction

Overall Exergy Plant Destruction

Overall Exergy Plant Destruction including nutrient reduction across the plant 6.7265

0.6800

2.1937

6.3793

4.2953

Outputs
1.4216

2.1016

Process Exergy Flow

Secondary Clarifier

Inputs
4.2953

Waste Water

Secondary Clarifier

Inputs Outputs

Waste Water

Sludge
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4.3 Plant C Site Description and Results 

 

This facility has a PE of 12,000 with a reserve capacity of 4,000 PE. The inlet works 

comprises mechanical and manual screens together with a compaction unit, overflow unit and 

grit traps. 

The influent is then passed to the anaerobic tanks where it is mixed with RAS. The effluent 

from each anaerobic tank is spilt between the two aeration basins. The secondary treatment 

process is a single stage anoxic zone extended aeration process followed by clarification. The 

clarified effluent is discharged to an inland river. This is the primary discharge point. The site 

layout of the plant is detailed below in Figure 8: 
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Figure 8: Site Layout Plant C 
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4.3.1 Calculation Assumptions 

 

• A 13.57% reduction in organic matter across the pre – treatment works was assumed. 

This figure was obtained from organic matter reductions in eight different waste water 

treatment plants [64].  

• As an intermittent process sample for organic matter was not taken for plant C 

WWTP, the reduction in organic matter across plant B was used as a reference as both 

plants are of similar scale and similar treatment processes in place.  

• As no inter – process nutrient data exists for plant C, nutrient exergy reduction is 

therefore only included in analysis at the end of the calculations.  

• No inter – process sludge existed for plant B. The sludge output calculation in the 

secondary was determined dividing the daily average of sludge out of the plant 

(kg/day) by the daily average of flow through the plant in m
3
/day.  

• The chemical exergy of nutrients (kJ/mol) has been previously calculated by Szargut. 

This value obtained from Szargut (kJ/mol) is multiplied by the concentration of the 

component in (mol/l), resulting in an exergy value in kJ/l.    

• No return activated sludge line to the inlet of the aeration basin was present on the site 

layout plans. It was quite possible that activated sludge is returned to the inlet of the 

aeration basin but the figure was not included in analysis for this reason. Also, this 

data was not available when the analysis was performed. Hence return activated 

sludge is excluded from the analysis.   

Table 27 below provides a breakdown of the measured data across each of the processes 

recorded from the plant C. The table is included for the readers’ ease of reference when 

looking for specific values from plant C. 
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Table 27: Summary of Plant C's Process inputs and outputs 

 

Tables 28 – 30 detail the exergy values of the process inputs & outputs across each of the 

treatment processes in plant C and the overall exergy destruction across the process.  

Table 28: Plant C – Pre Treatment works 

 

 
 

Process stage Flow type Flow (m3/day) COD (mg/l) TN (mg/l) TP (mg/l)
Energy 

(kWh/day)

Chemical 

exergy (kJ/l)
Work (kJ/l) Total exergy (kJ/l)

Pre-treament (in) Wastewater 1,980 245.33 29.8 3.8 41.82 3.33 0.08 3.41

Pre-treatment (out) Wastewater 212.1 2.88 2.88

Aeration basin (in) Wastewater 212.1 395.56 2.88 0.77 3.65

Aeration basin (out) Wastewater 180.9 2.46 2.46

Secondary clarifier (in) Wastewater 180.9 2.46 2.46

Secondary clarifier (out) Wastewater 1,944 64.89 17 0.9 0.88 0.88

Sludge 30 0.40 0.40
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Table 29: Plant C - Aeration Basin 

 

Inlet & Outlet Exergy of Aeration Basin

Exergy (kJ/l)

Waste Water Organic matter (COD) (mg/L) 212.06

Other inputs Electricity (kWh/day) 395.56

Total Exergy @ Inlet

Waste Water Organic matter (COD) (mg/L) 180.89

Total Exergy @ Outlet

Total Exergy Destruction

2.4601

1.1945

Process Exergy Flow Type & Unit Flow

Aeration Basin

Inputs
2.8840

0.7706

3.6546

Outputs 2.4601

Waste Water

Electricity

Aeration Basin
Waste Water

Inputs Outputs



 

57 

Table 30: Plant C - Secondary Clarifier 

 
 

 

  

Inlet & Outlet Exergy of Secondary Clarifiers

Exergy (kJ/l)

Waste Water Organic matter (COD) (mg/L) 180.89

Total Exergy @ Inlet

Final Effluent Organic matter (COD) (mg/L) 64.89

Sludge (mg/l) 30.00

Total Exergy @ Outlet

Total Exergy Destruction

Overall Exergy Plant Destruction

Overall Exergy Plant Destruction including nutrient reduction across the plant 3.1040

2.8980

0.8825

0.4080

1.2905

1.1696

Secondary Clarifier

Inputs
2.4601

2.4601

Outputs

Process Exergy Flow

Waste Water

Secondary Clarifier

Inputs Outputs

Waste Water

Sludge
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5 Discussion 
 

Table 31 below provides a breakdown of results of all three analysed plants. Exergy 

destruction is compared across all plants and exergy destruction including nutrient exergy 

destruction is also detailed. Exergy losses meaning the lost opportunity do with work with 

WWTP process outputs is also detailed for all analysed plants. 

 

 

Table 31: Exergy Analysis Results Comparison 

Process 

Exergy kJ/l 

Plant A Plant B Plant C 

Pretreatment    

Exergy In 13.5 5.9 3.4 

Exergy out 3.7 5.0 2.9 

Exergy destruction 9.8 0.9 0.5 

Exergy Loss  0 5.0 2.9 

        

Primary Clarifier   n/a n/a 

Exergy In 5.5     

Exergy out 3.5     

Exergy destruction 2.1     

Exergy Loss  0     

        

Aeration       

Exergy In 9.4 7.6 3.7 

Exergy out 4.6 4.3 2.5 

Exergy destruction 4.9 3.3 1.2 

Exergy Loss  3.9 0 0 

        

Secondary clarifier       

Exergy In 4.6 4.3 2.5 

Exergy out 1 2.1 1.3 

Exergy destruction 3.6 2.2 1.2 

Exergy Loss  0.4 1.6 0.7 

        

Overall plant exergy destruction 20.2 6.4 2.9 

Overall Exergy Loss  4.3 6.6 3.6 
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5.1 Overall Plant Exergy Destruction Comparison 

 

 Figure 9 provides a breakdown of the cumulative exergy destruction across all 

treatment processes in Plants A, B and C.  

 

 
 

Figure 9: Exergy Destruction across analysed plants 

 

 The influent COD loading rate in Plant A is quite similar to that of Plant B and almost 

double that of Plant C. The main discrepancy between exergy destruction between 

Plant A and Plants B & C is that Plant A utilises return liquors in the pre-treatment 

works. These return liquors COD loading rates are double that of the influent load in 

Plant C and quite similar to the initial load in Plant B. 

 Plants B and C have similar PEs and plant configurations. The discrepancy between 

exergy destruction (kJ/l) across both plants can to a certain extent be related to the 

influent COD loading rates. The organic composition of the influent load in Plant B 

was almost twice that of Plant C during the sample period thus Plant B has greater 

oxygen requirements in its aeration basin to maintain DO concentration levels. 
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Therefore, a larger quantity of electricity will be used in Plant B, resulting in larger 

exergy destruction rates across the plant. 

 

5.2 Plant A exergy destruction and exergy loss discussion 

 

 

 

Figure 10: Exergy Destruction breakdown for Plant A 

 The pre-treatment works account for 48% of the exergy destruction across the whole 

WWTP. This is due to the excess activated sludge that is refed to the inlet works from 

the activated sludge system. These return liquors have very high organic loading rates, 

quite similar to the influent COD loading rates received by the plant.  

 Uncertainty exists regarding the exergy destruction rate across the aeration basin in 

Plant A as organic matter samples were randomly taken ten days for the analysed 

month, it is unclear from the data whether return liquors are sent to the inlet of the 

aeration basin daily or just on the days of sampling. If the return liquors are returned 

daily to the inlet of the aeration basin the magnitude of exergy destruction across the 

aeration could potentially increase by approximately a factor of 3.   

 As the return liquors are refed into the pre – treatment works for further processing, 

70% of the thickener return liquors will be utilised in conjunction with the primary 

sludge to produce energy in the anaerobic digestion system. It was not possible to 
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quantify the work potential of this process stream but the electricity produced from 

this process is utilised within the aeration basin, resulting in minimal exergy 

destruction across the aeration basin. 

 The aeration basin is normally the chief energy consumer within the majority of 

WWTPs, as is the case with Plants B and C. Plant A employs anaerobic digestion 

while Plant B and C utilise a combination of anoxic and aerobic zones to treat 

activated sludge.  This anaerobic digestion system produces almost 40% of the 

electricity requirements for plant. Allied to this, Plant A discharges its final effluent to 

the sea therefore it has the least stringent discharge limitations. Less energy is 

therefore required to purify the waste water to the required standards.  

 The secondary clarifier has the second highest exergy destruction with 28%; the 

chemical exergy lost in the destruction of the Mixed Liquor Suspended Solids 

(MLSS) is the chief source of exergy destruction. 

 Khosravi [49] noted similar losses across the secondary clarifier and minimal losses 

across the aeration basin were also noted.  

 To minimise this exergy loss across the secondary clarifier in Plant A, the MLSS 

should be diverted to the thickening/digesting systems for further processing directly 

from the aeration basin and then utilised within the anaerobic digestion system to 

produce energy. A source of exergy loss from the output of the secondary clarifier is 

the nitrogen in the sludge that could be utilised as fertiliser. 
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5.3 Plant B & C exergy destruction and exergy loss discussion 

 

 
 

Figure 11: Exergy Destruction breakdown for Plants B & C 

 

 Although significant differences exist in terms of exergy destruction magnitude, 

Plants B and C are similar regarding the order of their process exergy destruction; the 

hierarchy of exergy destruction being the aeration basin, the secondary clarifier and 

the pre-treatment works 

 In contrast to Plant A, the pre-treatment works account for only 16% of the exergy 

destruction across the whole WWTP on average between plants B and C. This is 

interesting as Plants B and C have a very similar PE and both discharge to inland 

rivers. A source of exergy loss from the output of the pre-treatment works from both 

Plants B and C is the pre-treated sewage which may have the correct volatile fatty 

acid mix to be utilised in an anaerobic digestion system.  

 The aeration basin has the highest exergy destruction with 46% on average between 

Plants B and C. The exergy value of electricity comprises a far greater proportion of 

total exergy destruction across both Plants B and C than in plant A.  

 The exergy value of electricity in Plant B comprises 78% of total exergy destruction 

across the entire process and 40% of total exergy destruction across the entire plant. 

Pre-
Treatment     

14% 

Aeration 
Basin 
52% 

Secondary 
Clarifier 

34% 

Plant B 
Pre-

Treatment  
18% 

Aeration 
Basin 
41% 

Secondary 
Clarifier 

41% 

Plant C 
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This exergy destruction is unavoidable due to the influent loading in plant B forcing 

all blowers in the aeration basin to operate during peak hours to meet oxygen 

requirements within the basin. 

 One potential explanation may be due to the primary treatment. The pre-treatment 

works and primary clarification in Plant A reduces the organic loading substantially 

prior to the aeration basin thus reducing the subsequent blower work input required. 

 This is not the case for Plants A and B, where there is no primary clarification and 

consequently the aeration basins receive higher organic loads. 

 Similar to Plant A the secondary clarifier has the second highest exergy destruction 

with 37% on average between Plants B and C. 

 Therefore, when optimising Plants B and C the aeration basin followed by the 

secondary clarifier should be the focus of optimisation improvements.  

 The waste sludge from this process could be utilised for composting if thermal drying 

process was implemented in both Plants B and C. Another source of exergy loss from 

the output of the secondary clarifier is the nutrients in the sludge that could be utilised 

as fertiliser from both Plants B and C. 
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6 Conclusions and Recommendations 
 

An exergy analysis of three WWTPs has been completed; the chemical exergy of waste 

streams such as organic matter, nutrients, disinfectants and electricity has been quantified.  

 

6.1 Conclusions 

 

The conclusions of this research thesis are now presented:  

 

 Exergy analysis is a useful tool to characterise WWTPs. However, in order to conduct 

an accurate exergy analysis of a WWTP plant information regarding sludge, 

emissions to air etc. is required. Lack of accurate data is a barrier to accurate exergy 

analyses. 

 Chemical exergy is the chief contributor to the total specific exergy of waste water 

treatment. 

 Organic matter has been identified as the chief contributor to the chemical exergy of 

waste water treatment. 

 The magnitude of exergy destruction (kJ/l) differed significantly for all three analysed 

plants. 

 Influent organic matter loading rates also greatly impact the electrical exergy 

destruction rates across a waste water treatment plant, if an anaerobic digestion 

system is not utilised to mitigate electrical energy consumption within the plant. 

 The plants of similar scale that were analysed experienced a two-fold difference in 

exergy destruction across the plants, with the plant with the lower organic loading 

exhibiting significantly less exergy destruction. 
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 The pre – treatment works had the lowest exegry destruction across the plants of 

similar scale that were analysed and the aeration basin had the highest exergy 

destrcution rate across both analysed plants.  

 The exergy destruction rate of the large scale plant was quite large in comparison to 

the plants of smaller scale. A large proportion of the exergy destruction in the larger 

scale plant is attributed to the pre – treatment works, this process is quite efficient 

removing 39% of the organic load. This efficiency comes at a cost, with large exergy 

destruction therefore associated with this process. 

 

6.2 Research Limitations  

 

 A limitation of the work is the lack of inter - process nutrient data for all analysed plants 

and the inability to quantify the exergy value of gaseous emissions from the various 

treatment processes. 

 Lack of available return activated sludge data is a limitation of this work.  

 Lack of available sludge data concentrations and flow rates is also a limitation of this 

work.  

 Subject to a better suite of data becoming available an additional assessment could be 

carried out.  
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6.3 Recommendations for further research 

 

Further work is needed to identify the most relevant/specific waste water chemical exergy 

model, which is not within the scope of this research project. 

 

Further work could also consider a comprehensive analysis of all identifiable WWTP inputs 

and outputs. Analysis and quantification of plant inputs such as metals, gases, sulphur, 

chloride, alkalinity etc. would provide extremely accurate characterisation of a WWTP from 

an exergy analysis perspective. 

 

Further work could characterise WWTP processes from an economic perspective. For 

example, exergy destruction across the aeration basin in plant A was insignificant in this 

research. However, it is widely known the aeration basin is the chief energy consumer in 

WWTPs, thus this process may require consideration from an economic perspective.   
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Appendix 
 

Table 1: Waste water treatment plant characteristics 

 
 

CHARACTERISTIC WWTP A WWTP B WWTP C 

Sampling dates 

03 to 07, 10 to 14 

17 to 21, 24 to 26 of 

Nov.  (2013) 

02/09/2014 to 

07/09/2014 

07, 08, 09, 14, 

15, 16, 19 of 

October 2015 

Number of days 18 days 6 days 7 days 

Flow streams 

sampled 

Influent and 

Effluent 

Influent and 

Effluent 

Influent and 

Effluent 

Number of samples 

per stream per day 

As per plant 

managers schedule 
6 6 

Time between 

samples 
N/A 4 hours 4 hours 

Influent testing 

location 
Influent Stream Screening Screening 

Influent sampling 

method 

Grab Sample 

(Automatic 

Sampler) 

24 hour 

composite 

24 hour 

composite 

Effluent testing 

location 
Outfall channel 

Leaving Final 

Clarifier 

Leaving Final 

Clarifier 

Effluent sampling 

method 

Grab Sample 

(Automatic 

Sampler) 

24 hour 

composite 

24 hour 

composite 

Energy data Yes Yes Yes 

Data point frequency 
Daily  totals and 

process breakdown 
30-60 seconds 30-60 seconds 

Influent flow data Yes Yes Yes 

Frequency and type Daily Total Daily Total Daily Total 

Effluent flow data Yes Yes Yes 

Frequency Daily Total Daily Total Daily Total 


