
A Framework for Selecting Deep Learning
Hyper-Parameters ?

Jim O’ Donoghue and Mark Roantree

Insight Centre for Data Analytics, School of Computing, DCU, Collins Ave., Dublin 9

Abstract. Recent research has found that deep learning architectures
show significant improvements over traditional shallow algorithms when
mining high dimensional datasets. When the choice of algorithm em-
ployed, hyper-parameter setting, number of hidden layers and nodes
within a layer are combined, the identification of an optimal configu-
ration can be a lengthy process. Our work provides a framework for
building deep learning architectures via a stepwise approach, together
with an evaluation methodology to quickly identify poorly performing
architectural configurations. Using a dataset with high dimensionality,
we illustrate how different architectures perform and how one algorithm
configuration can provide input for fine-tuning more complex models.

1 Introduction and Motivation

The research presented here was carried out as part of the FP7 In-Mindd project
[19], [10] where researchers use the Maastricht Ageing Study (MAAS) dataset
[16], [9], [22] to understand the determinants of cognitive ageing from behavioural
characteristics and other biometrics. The MAAS dataset recorded a high num-
ber of features regarding the lifestyle and behaviour of almost 2,000 participants
over a 12-year period. The challenge with this dataset is to determine those
features which provide the best predictive capabilities for a particular outcome.
Unlike health base studies where data is automatically generated using electronic
sensors [8] [20], data in MAAS is not easily mined. Machine learning takes two
broad strategies: the more common shallow approach and the more complex
deep learning (DL) approach. Where multiple issues - like high-dimensionality
or sparsity - arise within the dataset, the use of many shallow algorithms in
series is generally required. Shallow refers to the depth of algorithm architec-
ture and depth refers to the number of layers of learning function operations [4],
where anything less than 3 layers is considered shallow. Deep architectures are
algorithms where multiple layers of hidden, usually latent variables are learned
through many layers of non-linear operations [4], usually in the context of arti-
ficial neural networks (ANNs). Furthermore, these DL architectures have in the
past, proved very successful in learning models from high-dimensional datasets
[14], [21].

? Research funded by In-MINDD, an EU FP7 project, Grant Agreement Number
304979

2

DL architectures have been shown to perform well in learning feature rep-
resentations but require the optimisation of many hyper-parameters1 which is
a difficult process. In this work, we have developed a framework which can test
combinations of features and hyper-parameters in different deep learning config-
urations. Our goal is to find the Deep Learning architectural configuration most
applicable to prediction in the MAAS clinical study for dementia.

Contribution. Deep architectures have primarily been used in image, audio
and video domains where feature sets are often large and complex. Our con-
tribution is to develop an easily-configurable machine to facilitate the generic
implementation of algorithms with interchangeable activation functions. As a
result, we can easily run and evaluate many experiments with deep or shal-
low learners in a variety of configurations. Essentially, we provide a framework
for the selection of an initial hyper-parameter configuration in a deep learning
algorithm.

Paper Structure. The paper is structure as follows: in Section 2, we present
a detailed description of the Configurable Deep Network (CDN) which underpins
our framework; sections 3 and 4, describe our evaluation approach and setup
together with results and analysis; in Section 5, we discuss related research; and
finally in Section 6, we present our conclusions.

2 CDN - The Configurable Deep Network Architecture

Most classification algorithms have a similar procedure for training. First, ini-
tialisation occurs. This instantiates the model parameters (known as θ, a com-
bination of the weights and biases for the entire model) which allow for prediction
and this process gives a starting point from which these parameters can then be
tuned. A hypothesis function hθ(x)hθ(x)hθ(x) is then employed through which the data,
bounded by the model parameters goes, in order to predict an outcome, which
in our case is “forgetful? (yes/no)”. The cost J(θ)J(θ)J(θ) of these initial parameters
is then calculated with a function that measures the information lost between
the predicted outcome (result of hypothesis function) and the actual outcome. A
predictive model is learned by minimising the cost calculated by this function.

Gradient descent is one method to optimise the cost function and it proceeds
as follows: compute the gradient (or partial derivative) of the cost function with
respect to the model parameters, giving the slope denoted by δ

δθJ(θ); then up-
date the model parameters by taking the value found for the slope, multiplied by
a term called the learning rate (determines how far down the slope the update
will take the model parameters) and subtract the result from the previous pa-
rameters; and finally, repeat these steps until the model converges on the lowest
possible cost for the data. Stochastic Gradient Descent (SGD) calculates the cost
on an individual sample in the dataset and subsequently updates the parameters.
Mini-batch Stochastic Gradient Descent (MSGD) instead calculates the cost on
a subset of the dataset and then updates the parameters. This process allows us
to achieve a predictive model for: “forgetful? (yes/no)” in MAAS.

1 Parameters not learned by the algorithm but instead passed as input

3

2.1 Framework Overview

There are three high-level constructs in our architecture: nodes which contain
and execute the activation functions, layers which contain the nodes and handle
connections between layers and machines which contain the logic for the over-
arching algorithm. Each node in the bottom visible input layer reflects a feature
in the dataset and for supervised models (predicts an outcome given an input)
there is a visible output layer at the top of each configuration which performs
classification. In unsupervised models (learns a model without a class label) as
well for the internal layers (where applicable) in supervised models there is a
hidden layer or layers, where the feature representation is learned.

Fig. 1. Machine Configurations within the Framework

Our architecture is implemented in Python and built upon Theano [7], [2] - a
library for building and compiling symbolic mathematics expressions and GPU
computation. The functions below are implemented for every algorithm.

– initialise: instantiates model parameters (weights and biases), configures
layers and nodes, and associates hyper-parameters with the architecture.

– buildhypothesis: dependent on the classification type it builds a symbolic
expression for the hypothesis function, giving the prediction hθ(xi) = ŷi for
the sample xi.

4

– buildcost: based on the classification type it creates symbolic expressions
for: the cost J(θ) with regularisation2 (if applicable) and prediction error.

– buildmodel: computes the gradient of the cost function with respect to the
model parameters and uses this gradient to build a symbolic expression to
update the parameters. It compiles these symbolic expressions into functions
to train and (if applicable) pre-train the model.

– train: optimises the cost function. Can be supervised (with respect to a
class label) or unsupervised (no class label) depending on the algorithm. For
the DBN it performs unsupervised pre-training and supervised fine-tuning
(explained further in Section 2.5).

– predict: uses the hypothesis function and model learned to predict an out-
come, or reconstruct the data dependent on the algorithm.

The following four machines: Regression, Multi-Layer Perceptron (MLP),
Restricted Boltzman Machine (RBM) and Deep Belief Network (DBN) are cur-
rently implemented in our architecture and displayed in Figure 1. As our focus
is not an in-depth discussion of the technical detail of these algorithms but
their application to high dimensional clinical data and determining a DBNs best
hyper-parameters via a step-wise optimisation of its constituent algorithms, we
refer the reader to [4] for detailed technical information.

2.2 Regression

Three types of regression are currently implemented in our architecture: Linear,
Logistic and Softmax regression. As our experiments only evaluate softmax
regression, it will form the focus of our discussion. Softmax regression is a non-
linear multi-class classification algorithm which uses the softmax function for
the hypothesis and the negative log likelihood function for the cost. It is used
where class membership is mutually exclusive (sample can only belong to one
class) to generate a probability of class membership from 1, . . . ,K where K
is the number of classes. In our architecture we train softmax regression with
stochastic gradient descent.

2.3 Multi-Layer Perceptron

An MLP is a simple form of one hidden layer neural network, where latent and
abstract features are learned in the hidden layer. As with the other machines in
our architecture and for artificial neural networks (ANN) in general, each node
in a hidden layer L(i) is connected to every node in layer L(i−1) and every node

in L(i+1). Each node n
(i)
1 to n

(i)
n in layer L(i) contains a non-linear activation

function, which calculates a node’s activation energy. This value is propagated
through the layers via the connections, a subset of which are shown in Figure 1.
This process is called feed-forward propagation and is the hypothesis function
for all shallow and deep feed-forward neural networks.

2 ensures features with large data values does not overly impact the model

5

Our MLP was trained with SGD and back-propagation. It is similar to train-
ing a regression model and uses the same cost function except the parameters
in each layer must be updated with respect to the cost of the output.

2.4 Restricted Boltzmann Machine

An RBM is an energy-based, two-layer neural network. An RBM’s aim is to
learn a model which occupies a low energy state over its visible and hidden
layers for likely configurations of the data. The energy paradigm is an idea
taken from particle physics and associates a scalar energy value (real-number)
for every configuration of the variables in a dataset. Highly likely configurations
of the data occupy low energy states, synonymous to low energy configurations
of particles being most probable [4]. Training achieves this by maximising the
probability of the training data in the hidden and visible layers by learning their
joint probability distribution. This process gives a way of learning the abstract
features that aid in prediction in MAAS. The RBM was trained with contrastive
divergence [13] and MSGD.

2.5 Deep Belief Network

A Deep Belief Network is a deep ANN, meaning it can be successfully trained
with more than one hidden layer and differs from RBMs and MLPs as such. Each
subsequent layer learns a more abstract feature representation and increases the
models predictive power. DBNs are generative models characterised by unsuper-
vised pre-training and supervised fine-tuning. Unsupervised pre-training updates
the weights in a greedy layer-wise fashion, where two layers at a time are trained
as an RBM, where the hidden layer of one acts as the visible layer in the next.
Supervised fine-tuning then adjusts these parameters with respect to an outcome
via back-propagation, in much the same way as an MLP. Again, like an MLP it
makes predictions via feed-forward propagation. Here we pre-trained the DBN
with MSGD and fine-tuned with SGD.

3 Experimental Set-up and Design

3.1 Dataset Preparation and Preprocessing

The MAAS dataset [16] is a longitudinal clinical trial which recorded biometric
data on middle-aged individuals at 3 year intervals over 12 years. There are 3441
unique records and 1835 unique features spread throughout 86 ‘tests’ or study
subsections. To remove the temporal nature of the data, only baseline data was
analysed. To remove test level sparsity, a subset of the dataset was selected and
the remaining sparsity was removed through deletion or mean imputation. The
data was scaled to unit variance and categorised to one-hot encoded vectors so
that it could be input into our DBN and RBM. The continuous data had 523
instances and 337 features, whereas the one-hot encoded categorical data had
523 instances and 3567 features.

6

3.2 Experimental Procedure and Parameter Initialisation

The optimum parameters for each machine were located via a process called grid
search which tests a range of values to find wherein the optimum lies. Regression
was used to determine the learning rate, regularisation term and fine-tune steps
for the RBM, MLP and DBN; and the RBM and MLP were used to determine the
number of nodes in the first and second hidden layers of the DBN respectively.

The range searched for regularisation and learning rate was from 0.001 to 1,
roughly divided into 10 gradations. Three values for steps of GD were tested: 100;
1000; and 10000 as we estimated any larger values would lead to over-fitting (not
generalising well to new data) given the sample-size. All possible combinations
were tested for both continuous and categorical data, giving 246 in total.

The number of hidden nodes tested for both the RBM and MLP were 10, 30,
337, 900, 1300 and 2000. There were 337 features before categorisation therefore,
any more than 2000 hidden nodes was deemed unnecessary. Each configuration
was run twice (for categorical and continuous) in the MLP but 5 times each in
the RBM (only categorical) as there were 5 epoch values (1, 5, 10, 15 and 20)
being tested. Any more than 20 would have over-fit the data.

Bias terms were initialised to zero for all models. From Glorot et. al [12], the
MLP, RBM, and DBN weights were randomly initialised between the bounds:

[−4
√

6
fanin+fanout

, 4
√

6
fanin+fanout

], whereas for regression the weights were

randomly initialised without bounds. fanin is the number of inputs to and
fanout is the number of outputs from a node.

All experiments were run on a Dell Optiplex 790 running 64-bit Windows 7
Home Premium SP1 with an Intel Core i7-2600 quad-core 3.40 GHz CPU and
16.0GB of RAM. The code was developed in Python using the Enthought Canopy
(1.4.1.1975) distribution of 64-bit Python 2.7.6 and developed in PyCharm 3.4.1
IDE, making use of the NumPy 1.8.1-1 and Theano 0.6.0.

4 Experimental Results and Analysis

4.1 Evaluation Metrics

– Ex.: Experiment number - a particular hyper-parameter configuration. Each
number is an index into a list of the hyper-parameters being tested.

– I. Cost Initial cost - negative log likelihood (NLL) cost of untrained model
on training data

– T. Cost: Training cost - NLL cost of trained model on training data
– V. Cost: Validation cost - NLL cost of trained model on validation data
– Tst. Cost: Test cost - NLL cost of trained model on the test set
– Error: Prediction error achieved on the test set: 1 − (true pos+true negnum predictions)
– Alpha: Learning rate, a coefficient for the model parameter updates which

decides how big of a step to take in gradient descent.
– Lambda: Regularisation parameter, determines how much to penalise large

data values
– Steps: Number of steps of stochastic gradient descent taken

7

– Data: Format of the data - cont. (continuous) or cat. (categorical one-hot
encoded)

– Epochs: Iterations through the dataset, 1 epoch = 1 complete iteration

– Nodes: Number of nodes in each layer, visible-hidden1-. . . -hiddenn(-output)

4.2 Regression: Search for DBN learning rate and regularisation term

Table 1 shows the results and hyper-parameter configurations for the ten best
performing models in a series of grid-search experiments for regression. The
models are ranked by the lowest negative log-likelihood found on the training
data out of the 246 experiments performed.

Table 1. Regression Learning Rate, Regularisation and Steps Grid Search

Ex. I. Cost T. cost V. cost Error Alpha Lambda Steps Data

8-0-0 13.188452 0.001 45.818 0.258 0.9 0.001 100 cat.

8-1-0 4.925 0.002 7.725 0.305 0.9 0.003 100 cat.

8-2-0 7.608 0.00334 22.615 0.225 0.9 0.009 100 cat.

7-0-1 21.066 0.003 6.449 0.391 0.3 0.001 1000 cat.

8-1-1 9.718 0.004 35.637 0.238 0.9 0.003 1000 cat.

8-0-1 9.200 0.003919 15.913 0.305 0.9 0.001 1000 cat.

4-0-2 12.103 0.004 14.097 0.298 0.03 0.001 10000 cat.

4-0-2 16.553 0.004 16.351 0.338 0.03 0.001 10000 cont.

7-0-1 6.193 0.004 8.180 0.298 0.3 0.001 1000 cont.

5-0-2 11.149 0.005 9.223 0.291 0.09 0.001 10000 cat.

Experiments 8-1-0 and 7-0-1 achieved the best results for the categorical and
continuous data respectively. 8-1-0 achieved a low training cost of 0.002, a valida-
tion cost of 7.725 and a test cost of 0.305. 7-0-1 achieved a slightly poorer result
of 0.004, 8.180 and 2.816 for the same measures. Both experiments achieved the
second lowest cost on the training data, but performed significantly better on
the validation data, meaning these hyper-parameters generalised better. Models
learned were not optimal, but given the amount of data available they were ad-
equate as over 69% of the instances were correctly classified for the categorical
data and just over 70% for the continuous data.

Although the categorical data achieved a lower cost, the continuous data
made better predictions. This suggests categorising the data helped remove noise
but along with this the transformation eliminated some information relevant to
modelling. Interestingly the best performing learning rate (alpha) is much higher
for the categorical than the continuous data and ten times less iterations of
gradient descent (GD) were required. Therefore gradient descent was far steeper
for the categorical data as it converged and gave us the best parameters much
faster than with the continuous, showing that one-hot encoded data can be
modelled easier, building a predictive model in far less time.

8

4.3 RBM: To select optimum node count in first hidden layer of DBN

Table 2 shows the 10 highest scoring RBM model configurations out of 35 runs,
ranked by the best reconstruction cost (closest to 0) achieved on training data.

Table 2. RBM Layer 2 Hidden Nodes Grid Search

Ex. T. cost V. Cost Alpha Epochs Nodes

2-0 -68.719 -22.112 0.9 1 3567-100

1-0 -73.357 -19.580 0.9 1 3567-30

3-0 -75.110 -22.009 0.9 1 3567-337

0-0 -77.774 -20.665 0.9 1 3567-10

4-0 -98.590 -20.914 0.9 1 3567-900

5-0 -107.553 -20.575 0.9 1 3567-1300

6-0 -141.144 -22.532 0.9 1 3567-2000

2-1 -241.274 -18.547 0.9 5 3567-100

1-1 -241.527 -18.823 0.9 5 3567-30

3-1 -246.462 -18.575 0.9 5 3567-337

The result of the best performing RBM configuration can be seen in bold
in Table 2. It has 30 hidden nodes and went through 1 epoch of training. A
node configuration of 100 units in the hidden layer achieved the best reconstruc-
tion cost of -68.719 on the training data, compared to the configuration with 30
hidden nodes which scored -73.357. The 30 hidden node configuration was de-
termined to be the better architecture as it performed only slightly worse on the
training data but it scored -19.580 on the validation set, performing better than
every other configuration in the top 5 which measured in the 20’s. Therefore,
the 30 hidden unit configuration generalises better to unseen data.

The reconstruction cost achieved on the training data by Ex. 3-1 is far worse
at -435.809, but the validation score is better at -17.977 due to the higher num-
ber of epochs. As the model iterates through the training data, more and more
abstract features are learned so the model makes a better estimate at recon-
structing unseen data. We want to learn the features that perform comparable
on the training data as well as unseen data, therefore one training epoch gave
the best performance.

4.4 MLP: To select optimum node count in final hidden layer of DBN

Table 3 shows the top 10 scoring experiments out of the 14 performed. Here,
experiments 2 and 10 gave the best results achieving training, validation and
test negative log likelihood costs of 0.17, 2.107, 0.76 and 0.842, 11.664, 0.974
respectively.

From the above table it can be shown that ten hidden nodes - which is the
smallest possible number of hidden nodes - gave the best results for both the
categorical and continuous data. Further to this, the MLP improves upon the

9

Table 3. MLP Layer 3 Hidden Nodes Grid Search

Ex. I. Cost T. cost V. Cost Error Data Alpha Lambda Steps Nodes

2 2.389 0.17 2.107 0.232 cont. 0.3 0.001 1000 337-10-2

4 5.319 0.231 4.609 0.225 cont. 0.3 0.001 1000 337-30-2

6 13.466 0.332 12.436 0.225 cont. 0.3 0.001 1000 337-100-2

8 33.467 0.456 30.394 0.238 cont. 0.3 0.001 1000 337-337-2

1 11.247 0.842 11.664 0.291 cat. 0.9 0.003 100 3567-10-2

10 64.252 0.929 62.453 0.232 cont. 0.3 0.001 1000 337-900-2

12 73.305 1.426 78.562 0.212 cont. 0.3 0.001 1000 337-1300-2

3 30.256 1.473 35.802 0.318 cat. 0.9 0.003 100 3567-30-2

14 121.088 2.211 113.605 0.219 cont. 0.3 0.001 1000 337-2000-2

5 99.757 2.549 134.606 0.616 cat. 0.9 0.003 100 3567-100-2

model found with regression for both data-types as the best performing MLP
model was 76.8% accurate in its predictions for the continuous test data and
70.9% for the categorical.

As a better predictive model was found through the MLP when we compare
to regression, it would suggest that abstract features were learned in the hidden
layer. Further to this, as the smallest available hidden node value performed best
we conclude that the number of features particularly relevant to the outcome
we are modelling are relatively low. It can again be seen from the results that
that the continuous data lends itself to more powerful models in comparison to
the categorical data and this can be put down to information being lost during
transformation.

4.5 DBN: Comparing Configurations

Table 4 compares the results of the model learned with the hyper-parameters
found through grid-search in earlier experiments (Ex. 6 - parameters in bold from
previous experiments) with a randomly selected configuration (Ex. 1 - estimated
to be a logical starting point) which was then tuned (Ex. 3, 4, 5) and two other
configurations (Ex. 7, 8) which were an attempt to improve upon the results of
Ex. 6.

Tuning here refers to adjusting the hyper-parameters to find a better model.
The heuristic used was to start the learning rate and training steps low and
gradually increase one while observing if either the cost achieved or the accuracy
improves. If the measures improve up to a point before deteriorating it can be
seen that the global optimum has been overshot.

Ex. 6 achieved the third best error rate on the test data. It immediately
improved on 0.272 which was the lowest error rate achieved by picking a random
initial configuration and tuning using technique outlined above. In fact, 0.272
was the best test error achievable without hyper-parameters found from previous
experiments. Tuning improved the model up to a point (Ex. 2) before it degraded
(Ex. 3, 4) and then again achieved previous levels of accuracy (Ex. 5).

10

Table 4. Comparing DBN Configurations

Exp I. Cost T. cost V. Cost Error Alpha Lambda Steps Nodes

1 2.582 0.680 2.950 0.536 0.001 0.003 3000 3567-337-200-2000-10-2

2 1.653 0.434 1.383 0.272 0.001 0.003 3000 3567-3567-200-10-2

3 3.837 0.541 4.435 0.305 0.01 0.003 3000 3567-3567-200-10-2

4 0.694 0.693 0.695 0.616 0.9 0.003 3000 3567-3567-200-10-2

5 0.916 0.344 1.042 0.272 0.01 0.003 1000 3567-3567-200-10-2

6 2.818 0.632 0.858 0.265 0.9 0.003 100 3567-30-10-2

7 9.236 0.451 6.378 0.238 0.9 0.003 100 3567-337-10-2

8 0.748 0.579 0.624 0.245 0.9 0.003 100 3567-337-100-10-2

When choosing the estimated best starting point for the comparison configu-
ration it was thought that more hidden layers would better model the data. The
opposite was found when 2 hidden layers performed best. Interestingly, when a
number of nodes the same as the number of features for the continuous data
were inserted for the first hidden layer (Ex. 7) it improved on the test error from
in Ex. 6. Our analysis is that an abstract feature representation similar to that
of the original continuous data was learned in the first hidden layer.

0.238 - the lowest test error achieved (Ex. 7), improved upon on the error
for the best categorical data model found with the MLP and approaches our
previous best continuous data model score of 0.232 with the MLP. We concluded
that this was due to the DBN learning a better feature representation in its
hidden layers. This shows that a DBN with multiple-layers has great potential in
learning a feature representation from text based datasets, given that this model
was learned on only a small subset of the MAAS dataset and deep architectures
have been shown to far outperform shallow models given enough data [24].

Therefore, it can be seen that performing a grid search on: the regression
layer to find the learning rate and regularisation term; the RBM to find the
number of nodes in the first hidden layer; and the MLP to find the number of
nodes in the last hidden layer gave us a methodology for selecting a good starting
point from which to determine the best hyper-parameter configuration for our
deep network, at least in the case of a DBN.

5 Related Research

In [6], the authors introduce a random search method to find the best hyper-
parameter configuration for a DL architecture and compares their results to
previous work [17] which - like our own - uses a multi-resolution grid-search
coupled with a manual optimisation intervention element. In [6], they also carry
out a series of simulation experiments where random search is compared to both
grid-search and low discrepancy sequential methods. Their main contribution
is a large series of non-simulated experiments which search for the best hyper-
parameters for a one-layer neural network and Deep Belief Network. These are

11

carried out on eight datasets in order to recreate and compare their experimental
results with those obtained in [17].

Random search is found to outperform grid search on all datasets in a one-
layer neural network, but for the DBN experiments, random and grid search
perform comparably on four datasets with grid search outperforming on three
datasets and random search finding the best model on the fourth dataset. In [6],
the authors offer many reasons as to why random search is a better option but
most hinge on the fact that they show that the hyper-parameter search space,
although high-dimensional, has a low effective dimensionality. This means that
although there are many parameters to tune, only a particular subset of these
have a great effect on training the model and this subset is different for every
dataset (also shown in the paper). This property leads to random search being
more effective as it leaves fewer gaps in the search space and it does not require
as many iterations in order to find the optimum hyper-parameter configuration.
We chose grid and manual search for these exploratory experiments as it was
shown to perform comparably to random search for a DBN. Both [6] and [17]
chose to globally optimise the parameters of the entire DBN at once rather than
incrementally tune its constituent parts. In other words, they do not optimise
each model first where the results of the last set of experiments feed into the
next. Contrary to an adaptive approach, which is the focus of our experiments
and methodology.

A second major issue is the analysis of high-dimensional data and feature
selection [4], [5], [15] which has been extensively explored in a healthcare con-
text [1], [3], [11]. In [11] and [1], both groups describe a methodology where
features are selected in a two-step manually intensive fashion in order to learn
predictive models. In these two approaches for selecting a feature representa-
tion in the health domain, shallow algorithms are utilised and high dimensional
data is not encountered, where in one instance only nine features were modelled
[11]. Furthermore, sometimes relevant features were completely eliminated which
impacted on the performance of the model [1].

Finally, in the medical context, DBNs have been used for medical text classi-
fication [24], as well as to aid in medical decision making with electronic health
recordds [18], but never for the analysis of clinical trial data. Neither [24] or
[18] provide a methodology on how to choose the initial hyper-parameter con-
figuration of a deep learning architecture. Furthermore, they use third party
implementations of a DBN which do not allow for the extension with further
algorithms, activation functions or hyper-parameter configurations. In [24], the
authors utilise a single hidden layer in their DBN, which arguably is not a deep
architecture, although they do employ a unsupervised pre-training step.

6 Conclusions and Future Work

Long term clinical studies present a number of key issues for data miners, of
which high dimensionality, the identification of the principal features for pre-
diction and distinguishing the optimal hyper-parameter configuration are most

12

prevalent. To address these issues, we developed a strategy which uses a config-
urable deep network to facilitate many combinations of attributes and multiple
layers of attribute manipulation using regression, MLP, RBM and DBN models.
Our framework demonstrated the ability to improve upon a randomly selected
and tuned DBN configuration, as well the ability to configure many experimental
runs in order to test hyper-parameter configurations found with grid-search. Fur-
thermore, the MLP and DBN showed an ability to learn a feature representation
in the hidden layers as an increased predictive accuracy was found compared to
regression alone.

We are now extending our CDN to make use of: more accurate imputations
via hidden layer sampling; Gaussian hidden units for continuous data (avoid-
ing one-hot encoding); random search for hyper-parameter optimisation; and
dropconnect for improved accuracy [23].

References

1. Antonio Arauzo-Azofra, Jos Luis Aznarte, and Jos M. Bentez. Empirical study of
feature selection methods based on individual feature evaluation for classification
problems. Expert Systems with Applications, 38(7):8170 – 8177, 2011.

2. Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Good-
fellow, Arnaud Bergeron, Nicolas Bouchard, and Yoshua Bengio. Theano: new fea-
tures and speed improvements. Deep Learning and Unsupervised Feature Learning
NIPS 2012 Workshop, 2012.

3. Riccardo Bellazzi and Blaz Zupan. Predictive data mining in clinical medicine: cur-
rent issues and guidelines. International journal of medical informatics, 77(2):81–
97, 2008.

4. Yoshua Bengio. Learning deep architectures for ai. Foundations and trends R© in
Machine Learning, 2(1):1–127, 2009.

5. Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A
review and new perspectives. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 35(8):1798–1828, 2013.

6. James Bergstra and Yoshua Bengio. Random search for hyper-parameter opti-
mization. J. Mach. Learn. Res., 13:281–305, February 2012.

7. James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pas-
canu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio. Theano: a CPU and GPU math expression compiler. In Proceedings of the
Python for Scientific Computing Conference (SciPy), June 2010. Oral Presenta-
tion.

8. Fabrice Camous, Dónall McCann, and Mark Roantree. Capturing personal health
data from wearable sensors. In Applications and the Internet, 2008. SAINT 2008.
International Symposium on, pages 153–156. IEEE, 2008.

9. Kay Deckers, Martin PJ Boxtel, Olga JG Schiepers, Marjolein Vugt, Juan Luis
Muñoz Sánchez, Kaarin J Anstey, Carol Brayne, Jean-Francois Dartigues, Knut
Engedal, Miia Kivipelto, et al. Target risk factors for dementia prevention: a
systematic review and delphi consensus study on the evidence from observational
studies. International journal of geriatric psychiatry, 2014.

10. Neil Donnelly, Kate Irving, and Mark Roantree. Cooperation across multiple
healthcare clinics on the cloud. In Distributed Applications and Interoperable Sys-
tems, pages 82–88. Springer, 2014.

13

11. Shobeir Fakhraei, Hamid Soltanian-Zadeh, Farshad Fotouhi, and Kost Elisevich.
Confidence in medical decision making: application in temporal lobe epilepsy data
mining. In Proceedings of the 2011 workshop on Data mining for medicine and
healthcare, pages 60–63. ACM, 2011.

12. Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In International conference on artificial intelligence
and statistics, pages 249–256, 2010.

13. Geoffrey Hinton. A practical guide to training restricted boltzmann machines.
Momentum, 9(1):926, 2010.

14. Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm
for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

15. Eric J Humphrey, Juan P Bello, and Yann LeCun. Feature learning and deep archi-
tectures: new directions for music informatics. Journal of Intelligent Information
Systems, 41(3):461–481, 2013.

16. van Boxtel M.P.J. Ponds R.H.W.M Jolles J., Houx P.J. The Maastricht Ageing
Study: Determinants of. Maastricht: Neuropsych Publishers, 1995.

17. Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua
Bengio. An empirical evaluation of deep architectures on problems with many fac-
tors of variation. In Proceedings of the 24th International Conference on Machine
Learning, ICML ’07, pages 473–480, New York, NY, USA, 2007. ACM.

18. Znaonui Liang, Gang Zhang, Jimmy Xiangji Huang, and Qmming Vivian Hu.
Deep learning for healthcare decision making with emrs. In Bioinformatics and
Biomedicine (BIBM), 2014 IEEE International Conference on, pages 556–559.
IEEE, 2014.

19. Mark Roantree, Jim ODonoghue, Noel OKelly, Maria Pierce, Kate Irving, Martin
Van Boxtel, and Sebastian Köhler. Mapping longitudinal studies to risk factors in
an ontology for dementia. Health Informatics Journal, pages 1–13, 2015.

20. Mark Roantree, Jie Shi, Paolo Cappellari, Martin F. OConnor, Michael Whelan,
and Niall Moyna. Data transformation and query management in personal health
sensor networks. Journal of Network and Computer Applications, 35(4):1191 –
1202, 2012. Intelligent Algorithms for Data-Centric Sensor Networks.

21. Ruslan Salakhutdinov and Geoffrey E Hinton. Deep boltzmann machines. In
International Conference on Artificial Intelligence and Statistics, pages 448–455,
2009.

22. Martin PJ van Boxtel, Frank Buntinx, Peter J Houx, Job FM Metsemakers, André
Knottnerus, and Jellemer Jolles. The relation between morbidity and cognitive
performance in a normal aging population. The Journals of Gerontology Series A:
Biological Sciences and Medical Sciences, 53(2):M147–M154, 1998.

23. Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regularization
of neural networks using dropconnect. In Proceedings of the 30th International
Conference on Machine Learning (ICML-13), pages 1058–1066, 2013.

24. Antonio Jimeno Yepes, Andrew MacKinlay, Justin Bedo, Rahil Garnavi, and Qiang
Chen. Deep belief networks and biomedical text categorisation. In Australasian
Language Technology Association Workshop 2014, page 123.

