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Abstract.  

Fluid flow through a bone scaffold structure is an important factor in its ability to build up a 

living tissue. Permeability is often used as a measure of a structure's ability to allow for flow 

of nutrients and waste products related to the growth of new tissue. These structures also need 

to meet conflicting mechanical strength requirements to allow for load bearing. In this work, 

the effect of different bone structure morphologies on permeability were examined both 

numerically and experimentally. Cubic and hexagonal based three dimensional scaffold 

structures were produced via stereolithography and 3D printing techniques. In particular, 

porosity percentage, pore size, and pore geometry were examined. Porosity content was 

varied from 30% to 70% and pore size from 0.34 mm to 3 mm. An adapted Kozeny-Carmen 

numerical method was applied for calculation of permeability through these structures and an 

experimental validation of these results was performed via a standard permeability 

experimental testing set-up. From the results it was determined that increased permeability 

was provided with the cubic rather than hexagonal structure as well as by utilizing the larger 

pore size and higher levels of porosity. Stereolithography was found to be the better 

processing technique, not only for improved micrometer scale dimensional accuracy reasons, 

but also due to the increase wettability found on the produced surfaces. The appropriate 

model constants determined in this work will allow for analysis of new alternate structure 

designs on the permeability of rapid prototyped synthetic bone structures.  
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Introduction  

Synthetic scaffold bone structures are used during surgery to aid bone repair and orthopaedic 

implant attachment. These structures need to meet mechanical strength and permeability 

requirements to allow for load bearing and osteoconductivity respectively. To increase 

osteoconductivity, the structure has to be designed to allow for flow of nutrients and waste 

products related to the growth of new tissue. Fluid flow through a bone scaffold structure is 

therefore an important factor in its ability to build up a living tissue. Permeability is often 

used as a measure of a structure's ability to allow for this. To create a successful bone 

implant, certain criteria must be fulfilled: 1) a biocompatible material must be used; 2) the 



ideal pore size and porosity must be applied to provide required permeability and mechanical 

structural strength. Nowadays, there is a wide range of biocompatible materials available for 

tissue engineering. Ceramic-based scaffolds are also an important group of structures for 

skeletal implants due to their inertness and similarity of physical properties to natural bone 

Scaffolds developed by foaming sol—gel derived bioactive glasses were characterised in 

work of Jones et al. [1]. In their work the interconnectivity of pores was tested and it was 

found that permeability of the scaffolds fabricated by this method was comparable to 

trabecular bone. Porous commercial tantalum metal grafting material (Trabecular MetalTM) 

were previously characterised with porosity levels from 66% - 88% were tested for various 

parameters such as tangent elastic modulus, yield stress, strain behaviour and intrinsic 

permeability [2]. From this material, the intrinsic permeability and corresponding tangent 

elastic modulus of these structures were found to be similar to cancellous bone structures of 

comparable porosity. Another group of scaffold types recently reviewed are collagen or 

collagen-based structures. In a study presented by Al-Munajjed et al., the permeability and 

the porosity of hyaluronan-collagen scaffolds was tested [3]. The permeability was 

determined empirically and experimentally from which the relationship between increasing 

porosity and permeability with increasing pore size was determined. There is an increased 

interest in recent years in polymer based scaffolds which were recently reviewed by Cheung 

et al. [4]. PMMA scaffolds have been found to be suitable for manufacturing of highly porous 

scaffolds with controllable elastic modulus and permeability [5].  

Several experimental studies have conducted to measure the permeability of real bone [5-6]. 

In the work of Beaudoin et al. [6] permeability values ranging between 3 x 10
-9

 and 16 x 10
-9

 

m
2
 in the direction of trabecular orientation was determined using high-viscosity silicone. 

These results are comparable to the values obtained in the study of Grimm and Williams 

where permeability for human calcaneal trabecular bone in the range 0.40 — 10.97 x 10
-9

 m
2
 

were obtained using raw linseed oil [7]. Kohles et al. used water to measure permeability of 

cancellous bones from mature bovines [8]. The bovine bone sample produced values in the 

range of magnitudes (10
-10

 to 10
-9

 m
2
) similar to previous investigations. It is important to 

have similar values of pore size and permeability in artificial bone structures compared to real 

bone. Usually water solutions are used for this type of permeability testing.  

A lot of this previous research work has focused on the biocompatibility and mechanical 

strength of artificial bone structures. There remains a corresponding lack of work on the 

investigation of the permeability of these structures. In this work two different structures 

(cubic and hexagonal), previously investigated for mechanical strength capability in bone 

scaffold production, were compared for permeability [9]. These structure types provide a high 

stiffness combined with a high porosity and pore size. The structures were produced by rapid 

prototyping methods allowing pre-definition of the pore size, porosity, and external 

geometry. The goal of this work was to measure the permeability coefficients of these new 

structures and to develop a method to determine the appropriateness of the various new 

designs in terms of permeability.  

 



2. Experimental  

The 3D cubic and hexagonal samples (as shown in Fig. 1) were manufactured using a Z310 

Z-Corp 3D printer and a common 3D printing powder material ZP 113 (plaster — calcium 

sulphate) and binder ZB-58 (epoxy) were used. To reinforce the specimens, infiltration using 

the epoxy ZMax resin was performed. The models are designed using computer aided design 

software SolidEdge V100, PTC and saved as stereolithography files. To evaluate the 

structures purely from a permeability point of view, no biocompatibility is needed and 

therefore these standard plaster-based powder and epoxy resin materials were used. Models 

were also produced in polyurethane via the micro-stereolithography technique, which allows 

for components of smaller dimension and higher accuracy, supplied by Hordler Rapid 

Engineering GmbH, Germany. 

 

 

The cubic structure was omni-directional, and therefore the test was only conducted along 

one axis. Testing for the hexagonal structure was performed along the direction with the 

largest pore area presenting to the fluid flow. The pore size was defined as the length of the 

strut for one edge of the cube structure and as the diameter of the circle which could be 

inscribed within the presenting hexagonal area. Hexagonal structures were fabricated with a 

second defining length, which was the height between layers. The external boundary of a 

larger set of these structures was a 15x15x15 mm cube with an internal pore size and porosity 

level ranging 0.34 to 3 mm and 30% to 70% respectively. Another smaller set of structures 

within an external boundary of 3x3x3 mm contained a pore size ranging from 0.6 to 0.34 

mm, also designed with a porosity ranging from 30% to 70%. Each of three conditions was 

fabricated and tested three times to test for repeatability.  

Specimens fabricated via the 3D printing method were cleaned using compressed air and then 

infiltrated using the epoxy resin. The infiltration process was implemented by dipping each 

specimen into the resin mixture and then exposed to a reduced atmospheric pressure (0.2 Bar) 

for 3 minutes to improve infiltration. This process was repeated three times to provide for 

maximal infiltration. The infiltrated specimens were left to dry over the night. Subsequently 



the horizontal pores were blocked using tape and by the sample receptacle of the permeability 

setup (see Fig. 2) during testing to prevent liquid leakage when exposed to the liquid flow. 

Water-glycerol solution (Sigma Aldrich) was employed to simulate a level of viscosity within 

the range typically found for blood viscosity, which is in the range from 3 to 6 times higher 

than water depending on the hematocrit, blood flow rate, and blood constituents such as 

proteins, nutrients, hormones and excretory products [10].  

 

 

 

Blood typically varies from 3 mPas to 6 mPas while blood without cells is typically in the 

range from 1 to 1.3 mPas. In this work the viscosity of the glycerol solution was recorded at 

3.6 mPas using a rotational viscometer (Rheology International Instrument, ASTM Spindle 

Type2).  

For permeability measurement, the principle of the measurement was to let water flow 

through different samples, and measure the fluid volume and time. A liquid tank 

(500x300x400 mm) was used and the measured volume was 500 ml. The large tank provided 

constant hydrostatic pressure and as the height difference, Ah, was set at 800 mm. The 

hydrostatic pressure was calculated as follows:  in =  g hg = 8066Pa for glycerol- water 

solution , where  glycerol/water = 1027.78 kg/m
3
. 



3. Results and discussion  

Figure 3 shows experimental results determined from the cubic and hexagonal structures for 

different pore sizes and percentages of porosities. The Kozeny-Carman formula, first 

proposed by Kozeny and later refined by Carman, is commonly used to predict permeability 

and has many forms. The theory is based on the classical Navier-Stokes fluid mechanics, like 

fluid flowing in capillaries [26]. The form used in this work to determine the permeability 

factor, K, in units of m2 was as follows: 

 

 



The constant C is used for describing the shape of the particles. As a first approximation, a 

value of 0.2 was used for C, selected from previous data based on the experimental work of 

Chapuis [11 ] . This constant was re-calculated based on the findings of the experimental 

work presented Fig. 3. The "specific surface" is the one of the most critical parameters. The 

whole solid surface of the structure, measured directly from the CAD models was used to 

calculate the specific surface. The newly determined corrected C factors, C = 0.06 for the 

cubic structures and C = 0.11 for the hexagonal structures, were used in the Kozeny-Carman 

model to determine the permeabilities of these structures. Figure 4 shows the results 

calculated from the adapted Kozeny-Camen model. 

 

 

 

Conclusion  

From the results it clear that the experimental method used in this work are capable of 

producing good comparison of permeability through different bone scaffold structures. The 

permeability values determined in this study correspond well with the range of results from 

other researches. In particular the cubic structure showed permeability values ranging from l 

x 10-8 m2 to 2x 10-9 m2 for these structures. The cubic structure, large pores sizes and 

higher porosity contents were found to provide increased permeability. For the real bone 



structures, the pore size typically ranges from 100 to 500 pm and in this range, the calculated 

permeabilities fitted well to the measured values. The permeability depends on the surface 

area of the whole structure, on the material surface, the internal structure, and on the applied 

flow fluid. The greatest influence was caused by the pore size with less effect evident from 

different porosity levels at the lower pore sizes. The ideal permeability may be determined as 

that which is currently found in natural bone materials or higher permeability might be 

preferable for new scaffolds. This work presents a method whereby the desired permeability 

level can be achieved by design and tested experimentally and numerically.  
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