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Abstract 

A portable instrument for oxygen determination, based on the quenching of 

phosphorescent octaethylporphyrin by gaseous O2 has been developed using the fluorimetric 

paired emitter–detector diode technique (FPEDD). The instrument configuration consists of 

two light emitting diodes (LEDs) facing each other including an interchangeable support 

containing a phosphorescent membrane in between, in which one of the LEDs is used as the 

light source (emitter LED) and the other working in reverse bias mode as the light detector. 

The feasibility of using a LED as a luminescent detector is studied. Its small size allows the 

integrationof the instrument into a portable measurement system. A systematic study of the 

system capabilities as a portable instrument, was carried out in order to optimize: range, 

sensitivity, short term and long term stability, dynamical behaviour, temperature influence, 

humidity influence and temporal drift. 
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Introduction 

One of the current trends in analytical chemistry is the development of portable 

instrumentation, with characteristics of robustness, compactness, small size, and the 

capability of delivering sensory information anywhere is required. In this approach, special 

attention is paid to the use of LEDs as near monochromatic low power sources of light. On 

the other hand, LEDs as detectors are attractive due to the reduction of electronic component 

complexity by eliminating the need for wavelength selection (e.g. photodiodes) if the 

absorption spectrum of the analyte or its derivative is compatible with the emission spectrum 

of the selected emitter LED [1]. 

It has been established that the internal photoelectric effect (opposite to 

electroluminescence phenomena, enabling the conversion of electric energy into light by 

LED) allows the use of an LED as a light detector when it is operated in the reversed mode 

[2;3]. 

The Paired Emitter-Detector Diode (PEDD)-based photometry technique is more 

developed,is well developed nowadays,   where a complete absorbance detector can be easily 

constructed using only two LEDs [1;4]. In such an instrument, one of them (the LED-emitter) 

compatible with the absorption spectrum of analyte or a derivative, whereas the second one 

(the LED-detector) plays the role of detector of non absorbed radiation. The integration of 

such compatible LEDs leads to the construction of compact PEDD-based instruments which 

are useful as dedicated and complete photometers.[ref Isabel]
 

The first application of a PEDD system was made to measure colour, and to monitor 

colorimetric chemical reactions (pH induced colour change) [5] or to colorimetrically detect 

cadmium(II) and lead(II) in water samples [6]. Moreover, this sensing approach can be 

arranged to make transmission or reflectance measurements [4], so it was possible to monitor 

color variations due to pHin flow systems [7] or phosphate determination [8], the detection of 

dyes and metal ions [9], automated acid–base titrations [10], kinetic measurements performed 

directly inside flow-through reaction chambers [11] and open-tubular bioreactors [12], as 

well as enzyme activity assays performed in flow injection analysis (FIA) format [13]. Flow-

through PEDD sensors for redox species based on prussian blue films [14] as well as PEDD-

based sensors for gaseous acidic species [15] and carbon dioxide [16], all based on 

membranes containing immobilized pH-indicators, have been developed. Only recently, a 

redox optosensor, which has a polyester film with prussian blue and glucose oxidase co-
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immobilized working simultaneously as a chemo- and bioreceptor, has been applied for 

PEDD-based glucose biosensor development [17]. The further integration of PEDDs with 

optosensing membranes allows the development of complete absorption-based sensors [16] 

Moreover, by coupling with chromatographic techniques, PEDDs have been applied for the 

detection of some species like Mn(II)- and Co(II)-2-(pyridylazo)resorcinol complexes and 

alkaline earth metals in water solutions [18-20].  

Fluorimetry is another important field of analytical chemistry where LEDs are 

intensively investigated, since it was found that LED induced fluorescence (LED-IF) can be 

useful for analytical purposes [21;22]. LED-IF based systems are widely reported in the 

analytical literature [23-28], however the main attention is put into the improvement of 

fluorescence excitation efficiency, for instance by changing LED-emitter geometry.  

The first reported study regarding the use of LEDs applied as a detector for 

fluorescence was a tri-LED-based system for the determination of quinine in tonics where a 

cuvette holder with mounted LEDs allowed for dual, photometric and fluorimetric detection 

of analytes [29]. Recently, it was demonstrated that fluorimetric detectors made of two 

appropriate LEDs can be applied to do measurements in continuous flow [30]. These flow-

through prototypes of fluorimetric PEDDs (FPEDDs) enable the determination of fluorescent 

analytes at low concentration levels [31]. In order to get an effective luminescence excitation, 

the emission spectrum of LED emitter should be compatible with the excitation spectrum of 

the analyte or recognition system plus the LED detector should produce radiation of lower 

energy than measured fluorescence [30]. 

The cost of monitoring gases is of major concern for environmental applications [C. 

Fay, Sensors 2011, 11, 6603-6628], therefore instrumentation, designed using low cost 

components like LEDs, ensures high production at low costs. This instrumentation can be 

widely used by the environmental agencies in more locations more often, promoting a better 

and more realistic environmental monitoring and control. In addition, portable instruments 

capable of measuring gas concentrations, e.g. oxygen, carbon dioxide, methane, etc, offer the 

possibility of measuring on the point-of-site or even in a wearable personalised configuration, 

e.g. fire-fighters and doctors. [Radu T, World Academy of Science, Engineering & 

Technology; Oct2009, Vol. 58, p80-83, 4p] 

Moreover gas ration and flow control are of crucial importance in the sanitary sector 

[Stuart-Andrews, C. British Journal Of Anaesthesia 2007, 98, 45-52]. Instrumentation 
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capable of achieving accurate measurements of certain gases, e.g. oxygen, on the point of 

side will speed up the response of the sanitary authorities, nurses or doctors, in case of an 

unexpected event and therefore reduce fatalities and sanitary costs. The main goal of this 

study is the development of a portable device integrating a luminescence paired emitter–

detector diode system for the determination of a gaseous analyte, oxygen, based on the 

luminescence quenching of a sensing film containing the dye platinum octaethylporphyrin 

complex immobilized in a polystyrene membrane [32]. 

 

Experimental 

Chemical and reagents and equipment 

The reagents used were platinum octaethylporphyrin complex (PtOEP, Porphyrin 

Products Inc., Logan, UT, USA) and 1,4-diazabicyclo[2.2.2]octane (DABCO; 98%, from 

Sigma–Aldrich Química S.A., Madrid, Spain). The polymer and solvent used were 

tetrahydrofuran (THF) and polystyrene (PS, average MW 280,000, Tg: 100 ºC, GPC grade) 

both from Sigma. The cocktail was prepared by weighing the chemicals with a precision of 

±0.01 mg in a DV215CD balance (Ohaus Co., Pine Brook, NJ, USA). The gases O2 and N2 

used were of a high purity (>99%) and were supplied in gas cylinders by Air Liquid S.A. 

(Madrid, Spain).  

The standard mixtures of oxygen were produced using nitrogen as the inert gas 

component by controlling the flow rates of oxygen and nitrogen gases entering a mixing 

chamber using a computer-controlled mass flow controller (Air Liquid Spain S.A., Madrid, 

Spain) operating at a total pressure of 760 Torr 1 atm and a flow rate of 500 cm
3
 min

−1
. 

The interchangeable membrane platform was fabricated using a laser ablation system-

excimer/CO2 laser, Optec Laser Micromachining Systems, Belgium and a laminator system 

Titan-110, GBC, USA.  150 m PMMA (poly(methylmethacrylate)) sheets were purchased 

from Goodfellow Cambridge Ltd, UK; 50 m double-sided pressure sensitive adhesive film 

(AR8890) was obtained from Adhesives Research, Ireland and Mylar-type polyester from 

Goodfellow Cambridge Ltd, UK. 

The red LEDs used were supplied by Digi-Key (Ireland Part No. 67-1612-ND) and 

the green LEDs, L-7113GC were supplied by Kingbright manufacture (Radionics, 451-6537). 
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Instrumentation 

Figure 1 presents a diagram of the system setup used showing a custom designed 

(using a CAD package) and fabricated frame support. The purpose of this design was to 

constrain the movements of each component during experimentation and therefore to 

eliminate errors that may arise from mechanical layout. It can be seen that both LEDs were 

fixed and also that the frame design incorporated two slits for modularity i.e. for 

interchangeability of the membrane.   

Figure 1 

Figure 2 presents a schematic representing the relevant electronic implementation of 

the system. At the heart of the instrument was the microcontroller (MSP430 F449) which was 

responsible for complete system operation i.e. measurement, actuation of the emitter LED, 

timing and communications to the PC. Initially, the microcontroller was programmed to 

firstly charge the detector LED i.e. the IO was set to output mode and then to logic high (3.3 

V). Next, in the same manner (i.e. by setting the emitter IO to logic high), power was 

supplied to the emitter LED via the transistor. After that, the detector LED’s IO was set to 

input mode where its logic level was checked 65535 (216 -1) times and subsequently 

incremented a software counter if the logic level was 1. Once complete, the emitter LED was 

switched off and the resulting counter value was communicated to a PC over the 

microcontrollers UART port and captured using a communications package (HyperTerminal, 

Microsoft). Based on the kinetics of the chemistry involved during development and through 

previous studies (see Figure 2), the measurement and reporting regime was set to repeat 

without end at a frequency of 1 Hz. 

Figure 2 

 

Sensing interchangeable membranes preparation  

In order to carry out the design of an easy to handle instrument, the membranes were 

cast on aMylar support. . This allows an easy interchange of the membrane when, for 

instance, testing different systemsand to reduce stress during the storage process too. Since 

the membrane support is designed by AutoCAD, making them reproducible from one 

membrane to another, the overall instrument accuracy is improved. Also the membrane 
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holder always guarantee the same position of the membrane in the holder, what is an 

improvement compare with casting the membrane on top of the LEDs.  

Mixtures for the preparation of the oxygen-sensitive membrane were made by 

dissolving 0.5 mg of PtOEP and 12 mg of DABCO in 1 mL of a solution of 5% (w/v) of PS 

in freshly distilled THF. The sensitive membranes were cast by placing 10 L of the cocktail 

on the Mylar interchangeable membrane with the aid of a micropipette. After the addition, the 

membrane was left to dry in darkness in a THF atmosphere for 1 hour. The obtained 

transparent pink membrane was homogeneous with an estimated average thickness of about 

75 m and a PtOEP concentration of 0.055 mol kg
-1

 polymer. Oxygen-sensing membranes 

need to be cured in darkness for 9 days before use [33]. The prepared membranes were kept 

inside a box in darkness when they were not in use.  

 

Measurement conditions 

The standard mixtures for instrument calibration and characterisation (O2 in N2) were 

produced using N2 as the inert gas component and by controlling the flow rates of the 

different high purity gases (≥ 99.5%) N2 and O2, in each case, entering a mixing chamber 

using a computer-controlled mass flow controller operating at a total pressure of  1 atm and a 

flow rate of 500 cm
3
 min

-1
, with a specified accuracy of ± 0.5% of the reading and ± 0.1% of 

full scale. For the portable instrument characterisation, the measurements were performed 

after 2 min equilibration of the instrument atmosphere with the gas mixtures obtained with 

the gas blender indicated above.  

In order to produce different humidity conditions, a controlled evaporator and mixer 

(CEM) system (Bronkhorst high-tech B.V., AK Ruurlo) was used. This system consists of a 

mass flow controller for measurement and control of the carrier gas flow (N2), a Coriflow 

which allows the measurement of mass flow for liquids (water in this case) and a CEM 3-way 

mixing valve and evaporator for control of the liquid source flow and mixing the liquid with 

the carrier gas flow resulting in total evaporation. In addition a temperature controlled heat-

exchanger was employed to produce a complete evaporation of the liquid, and allows 

preparing mixtures with relative humidity (RH) between 0 and 100%. 

All measurements were repeated six times in total in order to check for experimental 

error. A homemade thermostatic chamber, with a lateral hole for the connexion to a computer 
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and gas tubing entrance, made possible to maintain a controlled temperature between −50 ºC 

and 50 ºC with an accuracy of ±0.5 ºC, for the thermal characterisation of the sensor. 

 

Results and discussion 

Optical response of sensing membranes and instrument response 

 The mechanism of the response of the instrument is based on the dynamic quenching 

of the PtOEP complex luminescence emission caused by oxygen that results in changes of 

both, luminescence intensity and lifetime. Another gas of interest that can be analysed using 

this mechanism is carbon dioxide [ref Isabel], which in combination with oxygen, are of high 

clinical interest in air pressure masks and gases on blood, among others. 

 As shown in Figure 3, this compound had a maximum of absorption at around 537 nm 

attributed to the metalloporphyrin Q-band. The sensing membrane containing this substance 

is excited by a red LED (maximum at 525 nm) which emission overlaps with the excitation 

wavelength (537 nm) of the luminescence substance. PtOEP has the maximum emission at 

655 nm that overlaps with the spectrum of green LEDs that acted as the detector and shows 

an emission maximum at 670 nm. 

 

         Figure 3 

The system presented here responded to O2 via changes in the luminescence emission 

of the PtOEP which generated consequent changes in the discharge time of the reverse biased 

detector LED, that are related to the O2 concentration. When increasing the O2 concentration 

in the surrounding atmosphere the quantity of radiation that reaches the detector LED 

decreases, so the time required to discharge the luminescent detector LED increases. As a 

consequence, we can correlate the time required to discharge the luminescent detector LED to 

the luminescence intensity of the sensing membrane.  

In order to find the optimum membrane for oxygen sensing, different amounts of the 

cocktail (5, 7 and 10 µL) were cast on the interchangeable support by spin coating and the 

difference between the discharge time at pure nitrogen (t0) and pure oxygen (t100) with each 

of the membranes was investigated. The best results in terms of t0-t100, that is the maximum 

difference between the analytical signals measured, were obtained with the higher amount of 



8 

 

composition tested (Figure 4) and therefore this volume was selected for preparing the 

sensing membranes. 

          Figure 4 

To link discharge time and oxygen concentration the Stern–Volmer equation was 

used. The value I0 corresponds to the intensity in the absence of oxygen and I at any oxygen 

concentration; t0 corresponds to the discharge time in the absence of oxygen and t to the 

discharge time at any oxygen concentration, finally KSV is the Stern-Volmer constant, 

 

Equation 1 

 

 The fittings to the Stern–Volmer equation (Eq. 1) are linear for low oxygen 

concentrations up to 2 % of oxygen (see Fig. 5) and show a downward curvature at higher 

oxygen concentrations (Figure 5) according to the literature [34;35]. This curvature can be 

correctly fitted using an empirical function similar to a modified Stern–Volmer equation 

[36;37] (eq. 2, where f1 is the fraction of sites in membrane with a Stern–Volmer quenching 

constant, Ksv) resulting in a linear function (a: 12.02; b: 1.79; coefficient of determination R
2
: 

0.999). 

 

 Equation 2 

 

Analytical characterisation 

The exponential relationship between the discharge time and O2 concentration (eq. 2) 

is linearized using a modified Stern–Volmer equation type. The working range of the 

instrument is extended up to 30% of oxygen, because at higher percentages the decreasing in 

the discharge time is lower, increasing the error. 

The limit of detection (LOD) was calculated from the raw exponential experimental 

data using the first three points that can be adjusted to a straight line (tdischarge = 2541.5 [O2] + 

43720; R
2
 = 0.991) [38], by using the conventional approach defined by LOD = t

N
0 - 3 s0, 

where t
N
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standard deviation of the blank, which was determined from six replicate measurements. The 

limit of quantification (LOQ) of the instrumental procedure was obtained from the calibration 

function by using LOD = t
N

0 + 10s0.The LOD found using this approach was 0.01% and the 

LOQ was 0.16% of O2. 

A study of the dynamic response of the sensing membrane when exposed to 

alternating atmospheres of pure O2 and pure N2 was carried out. The response time was 

calculated from between 10% and 90% of the maximum signal, obtaining a value of 6.75 ± 

0.5 s, and the recovery time from 90% to 10% was found to be 55.0 ± 0.81 s.  

In all cases, the signal changes were fully reversible and hysteresis was not observed 

during the measurements. The response and recovery times are lower than those obtained for 

other system developed by us (response time 28.5 ± 0.6 s and the recovery time 59.0 ± 2.2 s) 

[32].  

The temporal drift of the measurements were studied by measuring at a fixed 

concentration of 21% oxygen for 14 hours, taking measurements every 2 seconds. The result 

obtained is 0.029% h
-1

 which is a reasonable value.  

The precision of the proposed prototype was determined by studying the intra-day 

reproducibility. Seven measurements at 100% N2 and 100% O2 were performed using the 

same membrane at 15 minutes intervals with 6 replicates each. A good reproducibility with a 

relative standard deviation of 0.54% was obtained for t0-t100.  

As it is well known, temperature has a considerable influence on the sensitivity of 

luminescent sensors like PtOEP [37;39]. The thermal dependence of the sensing membranes 

was evaluated by acquiring the response of the instrument at temperatures between 5 ºC and 

30 ºC. From this study, an increasing in sensitivity was observed with temperature. This non-

negligible cross-sensitivity of the sensor can be attributed to a thermally activated non-

radiative decay [40-43] 

       Figure 6 

The data obtained at each temperature (Figure 6) have been modelled using eq. 2, 

obtaining different values for the fitting parameters a and b for each temperature. A 

modelling function for these fitting parameters with the temperature can be found including 

the thermal dependence of the oxygen sensor in these constants. In this case, an exponential 

function was used for both parameters. Obtaining for the first parameter (a = 39.262e
-0.052

T; 
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R
2
 = 0.989) and for the second parameter (b = 2.670e

-0.022
T; R

2
 = 0.984) with the temperature 

expressed in degrees Celsius. 

In order to evaluate the possible effects that humidity may have on the measurements 

of the oxygen concentration, a study of the oxygen response at different humidity 

atmospheres (20, 30, 40, 50 ,60, 70, 80, 90, 100% RH) at five different oxygen 

concentrations (0, 2, 10, 20 and 30% O2) has been carried out using the climatic chamber. 

The percentage of variation between the biggest and the smallest value of the response of the 

instrument at each discrete RH level was calculated; the results showed that the variations 

oscillated between 0.01 and 3.5%. Because of the small difference found, it is concluded that 

the humidity conditions did not significantly affect the sensor performance.  

Stability was studied by means of an inter-day reproducibility measuring t0 and t100 

(with the same membrane as in the intra-day study) for 2 months (n= 8 per day) finding a 

relative standard deviation of 6.91%.  

Table 1 shows a comparison of the performance of the proposed instrument for O2 

with different optical sensing instrument from literature. The response time obtained with this 

new system is greater than two fold increase in comparison to the previous establish system, 

even the response and recovery times obtained here are comparable and/or lower than other 

sensing schemes widely used for O2 sensing.  

Besides, the proposed design is simpler than most of the comparable prototypes 

previously developed [44-47] where two LEDs and two photodetectors were used. A single 

channel sensor module was designed, mounted and tested [48], where the reference channel 

was removed and the signal channel synchronisation was performed by the microcontroller. 

The proposed design is more compact and offers better possibilities for miniaturisation in 

portable instrumentation. 

Table 1 

 

Conclusions 

A portable instrument for oxygen monitoring has been developed and tested under 

different conditions of temperature and relative humidity. The system is based on a FPEDD, 

where two LEDs were used, one acting as the light source and the other as the light detector. 

The instrument was capable of measuring oxygen concentration up to 30%. This instrument 
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was shown to be sensitive to changes in temperature but not to relative humidity. The limit of 

detection was found to be 0.01% of O2 and its response and recovery times obtained were 

very low, 6.75 ± 0.5 s and 55.0 ± 0.81 s, respectively. 

The sensing membranes can be used for more than two months and they show a low 

temporal drift of 0.41 % for 14 hours. 

. 

Comparatively with other portable instrumentation for O2 monitoring, the use of a 

system FPEDD offers a miniaturized form factor, good robustness, a reduced response time, 

and a relatively similar recovery times than existing instrumentation. These excellent 

characteristics, coupled with a very good design, make this instrument a promising tool to be 

used in portable instrumentation. 

Moreover, in the future a portable instrument for measurement of both oxygen and 

carbon dioxide at the same time can be achieved, since both gases have been measured 

separately with good results. 
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Table 1. Comparison of performance of proposed instrument for O2 with different optical O2 

sensing instruments in literature. 

 

Technique Range LOD Precision Remarks Reference 

Fluorimetry 
< 100 

vpm 
– – Phase modulation- based instrument [49] 

Fluorimetry 
<7.8 

ppm 

0.11 

ppm 
5.9 % Lifetime-based FO instrument [50] 

Fluorimetry/Multianalyte <50% – – Platform for indoor-air quality [51] 

Phosphorimetry < 21% 
0.16% 

v/v 
5.60% 

Flow-through FO RTP lifetime sensor 

RTP lifetime sensor 
[50] 

Phosphorimetry <30% – 0.2-0.4% Coated PD [32] 

Phosphorimetry/Multianalyte <30% 0.01% 0.05% Coated LED and PD [52] 

Photoluminescence/Multianalyte – – – 
Alq3OLEDs/PtOEP-film, Organic light-

emitting instruments (OLEDs) 
[53] 

Photoluminescence/Multianalyte <30% 0.14% 0.07% Coated LED and PD [43] 

Fluorimetry <30% 0.01% 0.05% FPEDD technique 
Current 

study 
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Figures 

Figure 1. Diagram showing the layout of the Emitter LED, Detector LED and the 

interchangeable membrane within the custom made support frame. 

Figure 2. Electronic schematic showing the relevant circuitry and interconnects between the 

Power Source, Controller Board, Emitter and Detector LED components. 

Figure 3. Excitation and emission spectra. A) Excitation spectrum of PtOEP; B) Emission 

spectrum of red LED; C) Emission spectrum of PtOEP; D) Emission spectrum of green LED. 

Figure 4. Discharge time versus time for membranes with different amount of the sensing 

composition. Membrane 1: 5 µL; membrane 2: 7 µL; and membrane 3: 10 µL. 

Figure 5.  A) Response of the system. Discharge time versus oxygen concentration. B) 

Linearisation first three points of the experimental raw data for the calculation of the LOD 

and LOQ.  

Figure 6. Temperature effect on the instrument response from 5 to 30ºC 
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Figure 4 
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Figure 6 
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