
IPSJ Transactions on Computer Vision and Applications Vol. 2 25–38 (Mar. 2010)

Research Paper

A Novel Visual Speech Representation

and HMM Classification for Visual Speech Recognition

Dahai Yu,†1,†2 Ovidiu Ghita,†1 Alistair Sutherland†2

and Paul F. Whelan†1

This paper presents the development of a novel visual speech recognition
(VSR) system based on a new representation that extends the standard viseme
concept (that is referred in this paper to as Visual Speech Unit (VSU)) and
Hidden Markov Models (HMM). Visemes have been regarded as the smallest
visual speech elements in the visual domain and they have been widely applied
to model the visual speech, but it is worth noting that they are problematic
when applied to the continuous visual speech recognition. To circumvent the
problems associated with standard visemes, we propose a new visual speech
representation that includes not only the data associated with the articulation
of the visemes but also the transitory information between consecutive visemes.
To fully evaluate the appropriateness of the proposed visual speech represen-
tation, in this paper an extensive set of experiments have been conducted to
analyse the performance of the visual speech units when compared with that
offered by the standard MPEG-4 visemes. The experimental results indicate
that the developed VSR application achieved up to 90% correct recognition
when the system has been applied to the identification of 60 classes of VSUs,
while the recognition rate for the standard set of MPEG-4 visemes was only in
the range 62–72%.

1. Introduction

Automatic Visual Speech Recognition (VSR) plays an important role in the
development of many multimedia systems such as audio-visual speech recogni-
tion (AVSR) 1), mobile phone applications, human-computer interaction and sign
language recognition 2). Visual speech recognition involves the process of inter-
preting the visual information contained in a visual speech sequence in order to
extract the information necessary to establish communication at perceptual level
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between humans and computers. The availability of a system that is able to
interpret the visual speech is opportune since it can improve the overall accuracy
of audio or hand recognition systems when they are used in noisy environments.

The task of solving visual speech recognition using computers proved to be
more complex than initially envisioned. Since the first automatic visual speech
recognition system introduced by Petajan 7) in 1984, abundant VSR approaches
have been reported in the computer vision literature over the last two decades.
While the systems reported in the literature have been in general concerned with
advancing theoretical solutions to various subtasks associated with the develop-
ment of VSR systems, this makes their categorization difficult. However, the
major trends in the development of VSR can be divided into three distinct cate-
gories: feature extraction, visual speech representation and classification. In this
regard, the feature extraction techniques that have been applied in the devel-
opment of VSR systems can be divided into two main categories, shape-based
and intensity based. In general, the shape-based feature extraction techniques
attempt to identify the lips in the image based either on geometrical templates
that encode a standard set of mouth shapes 17) or on the application of active
contours 3). Since these approaches require extensive training to sample the spec-
trum of mouth shapes, the feature extraction has recently been carried out in
the intensity domain. Using this approach, the lips are extracted in each frame
based on the colour information and the identified image sub-domain detailing
the lips is compressed to obtain a low-dimensional representation.

A detailed review on the research on VSR indicates that numerous methods
have been proposed to address the problems of feature extraction and visual
speech classification, but limited research has been devoted to the identification of
the most discriminative visual speech elements that are able to model the speech
process in the continuous visual domain. In this regard, most of the research in
the field of visual speech representation was concerned with the identification of
the optimal strategy that is able to map the elementary linguistic elements such
as phonemes in the visual domain. To this end, the most basic visual speech unit
that is able to describe the speech process is the viseme which can be thought of
as the counterpart of the phoneme in the visual domain. The viseme representa-
tion has attracted substantial research interest and this is mainly motivated by
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26 A Novel Visual Speech Representation

the fact that this visual speech strategy requires only a small number of viseme
categories to describe the continuous visual speech. While the application of the
viseme representation to model the visual speech is appealing due to its simplic-
ity and flexibility, the selection of the most representative viseme categories still
is an open research issue. Thus, many investigations in the area of VSR have
been conducted using viseme-based speech representations where the number of
viseme categories has been varied from 6 to 50 13). Although the identification of
the optimal viseme representation still is an ongoing research topic, the MPEG-4
viseme set has been the most used representation in the development of VSR
systems. This is partially motivated by the fact that the MPEG-4 viseme set has
been adopted to facilitate the analysis of the facial dynamics that are encountered
during the continuous speech, a process that is closely related to VSR. While the
viseme-based representation is intuitive as it can be applied in the generation of
phonetic sequences in the visual domain, recent studies have indicated that this
visual speech representation has associated several disadvantages when included
in the development of practical VSR systems. The most important issues are
related to their poor discriminative power, as the visemes have limited visual
support and more importantly they are highly sensitive to the lexical context.
In other words, the viseme visual context is highly influenced by coarticulation
rules that are enforced during the continuous speech process. To address the
vulnerability of the standard viseme representation to the lexical context, sev-
eral works on VSR proposed the introduction of compound speech elements such
as bivisemes, trivisemes 18)–23) or visyllables 24). These compound viseme-based
representations shown increased stability with respect to coarticulation rules (lex-
ical context), but it is important to note that the number of categories associated
with the biviseme and triviseme representations is substantially larger than the
categories associated with the MPEG-4 standard (14 viseme classes). This is
one of the main reasons that restricted the application of complex visual speech
representation such as visyllables in the implementation of VSR systems and as
a result the vast majority of approaches on VSR have attempted to model the
visual speech using either biviseme or triviseme representations.

The main goal of this paper is to propose a new visual speech modelling strat-
egy based on Visual Speech Units (VSU) that is able to incorporate the inter-

visual context between consecutive visemes. In this regard the VSUs extend
the standard viseme representation by including additional lexical context that
is represented by the information that sample the transition between consecu-
tive visemes. As opposed to other related implementation based on biviseme
or triviseme representations that were evaluated in the context of audiovisual
speech recognition 19),21) and text-to-audiovisual speech synthesis 18), where the
main problems are located in the process of synchronizing the audio and visual
information or generating photo-realistic face animations, the main contribution
of this work resides in the development of composite viseme descriptors (VSUs)
that are specifically designed to solve video-only speech recognition tasks. It is
important to note that the absence of audio information generates a more dif-
ficult scenario to perform the localization and recognition of the visual speech
descriptors, as these tasks have to be carried out only in the visual domain. Thus,
the major objective of this paper is to advance algorithmic solutions for robust
feature extraction and to propose a novel strategy that is able to perform the
alignment between the trained VSU models and the image data using non-rigid
registration techniques. To support the validity of our approach, a large number
of experiments are conducted to demonstrate that the inclusion of this new visual
speech representation in the development of VSR leads to improved performance
when compared with the performance offered by the standard set of MPEG-4
visemes.

This paper is organised as follows. Section 2 details the construction of the
Expectation-Maximization Principal Component Analysis (EM-PCA) manifolds
and the problems related to their application to VSR tasks. Section 3 provides
a detailed analysis of the viseme representation where the main emphasis of
the discussion is placed on the analysis of the main limitations associated with
this visual speech modelling strategy. Section 4 introduces the speech modelling
strategy based on Visual Speech Units (VSUs) and a substantial discussion is
provided to illustrate the advantages associated with these new visual speech
elements when compared to the standard MPEG-4 viseme categories. In this
section additional details related to the registration of the VSU training models
and the adopted classification scheme are also included. Section 5 presents the
experimental results, while Section 6 concludes this paper with a summary of the
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findings resulting from our study.

2. Lip Segmentation and EM-PCA Manifold Representation

2.1 Lip Segmentation
To enhance the presence of the skin in the image, the pseudo-hue 5) component

is calculated from the RGB representation for each frame in the video sequence.
Using this approach the image data can be approximated with a bi-modal dis-
tribution and the skin areas defined by pixels characterized by strong red and
green components are extracted by applying a thresholding operation, where the
threshold value is automatically selected as the local minima between the first
and the second peak of the pseudo-hue histogram. The region defining the lips is
identified by employing a simple validation procedure that attempts to rank all
regions resulting from the application of the thresholding procedure with respect
to their position in the image. The images resulting from the lip segmentation
procedure are as shown in Fig. 1, where the image depicted in Fig. 1 (f) is used
as input data to generate the manifold representation. This will be discussed in
the next section.

2.2 EM-PCA Manifold Generation
In order to reduce the dimensionality of the data resulting from the lip segmen-

tation process, data compression techniques are applied to extract the lip-features
from each frame in the video sequence. To achieve this goal, an Expectation-
Maximization Principal Component-Analysis (EM-PCA) scheme is applied to
obtain a compact representation for all images resulting from the lip segmenta-
tion procedure 6). The Expectation-Maximization (EM) is a probabilistic frame-

Fig. 1 Lip segmentation process. (a) Original RGB image. (b) Pseudo-hue component cal-
culated from the RGB image shown in (a). (c) Image resulting after thresholding.
(d) Image describing the mouth region. (e) ROI extracted from the original image (f)
Gray-scale normalized ROI.

work that is applied to learn the principal components of a dataset using a space
partitioning approach. Its main advantage resides in the fact that it does not
require to compute the sample covariance matrix as the standard PCA technique
and has a complexity limited to O(knp) where k is the number of leading eigen-
vectors to be learned, n is the dimension of the unprocessed data and p defines
the number of vectors required for training.

EM-PCA is an extension of the standard PCA technique by incorporating the
advantages of the EM algorithm in terms of estimating the maximum likelihood
values for missing information. This technique has been originally developed
by Roweis 6) and its main advantage over the standard PCA is the fact that it
is more appropriate to handle large high dimensional datasets especially when
dealing with missing data and sparse training sets. The EM-PCA procedure has
two distinct stages, the E-step and M-step:

E − step : W = (V T V )−1V −1A (1)

M − step : Vnew = AWT (WWT )−1 (2)

where ‘W ’ is the matrix of unknown states, ‘V ’ is the test data vector, ‘A’ is
the observation data andT is the transpose operator. The columns of ‘V ’ span
the space of the first k principal components.

As explained in the previous section, the lips regions are segmented in each
frame and the appearance of the lips is encoded as a point in a feature space that
is obtained by projecting the input data onto the low dimensional space generated
by the EM-PCA procedure. The feature points obtained after data projection
on the low-dimensional EM-PCA space are joined by a poly-line by ordering the
frames in ascending order with respect to time (see Fig. 2) to generate the man-
ifold representation. In the implementation detailed in this paper we used only
the first three EM-PCA components (k = 3) to construct the low-dimensional
manifolds since they are able to sample more than 90% of the statistical variance
of the images contained in the training stage. In our experiments we have used
a training database that consists of 40,000 images.

2.3 Manifold Interpolation
Since the manifolds encode the appearance of the lips in consecutive frames
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Fig. 2 EM-PCA manifold representation of the word ‘Bart’ (top) and ‘Hot’ (bottom). Each
feature point of the manifold is obtained by projecting the image data onto the low-
dimensional EM-PCA space.

Fig. 3 Manifold representation and interpolation (a) Manifold generated from two image
sequences of the word “hook”. (b) Manifold interpolation results.

through image compression, the shape of the manifold is strongly related to the
words spoken by the speaker and recorded in the input video sequence. Fig-
ure 3 (a) illustrates the manifolds calculated for two independent image se-
quences describing the same word. Although the video sequences have been
generated by two speakers, it can be observed that the shapes of the manifolds
are very similar.

While the manifold determined as illustrated in Fig. 3 (a) is defined by a discrete
number of points that is given by the number of frames in the video data, this
manifold representation is not convenient to be used for classification/recognition
purposes since the spoken words may be sampled into a different number of
frames that may vary when the video data is generated by different speakers. To
address this issue, the feature points that define the manifold are interpolated
using a cubic-spline to obtain a continuous representation of the manifold 8). The
manifolds resulting from the interpolation procedure are depicted in Fig. 3 (b).
The main issue related to the identification of the speech elements that define the
word manifolds is associated with the generation of a visual representation that
performs an appropriate phoneme mapping in the visual domain. This problem
will be addressed in detail in the next section of this paper.
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3. Viseme Representation

3.1 Viseme Background
The basic unit that describes how speech conveys linguistic information is the

phoneme. In visual speech, the smallest distinguishable unit in the image domain
is called viseme 4),14). A viseme can be regarded as a cluster of phonemes and
a model for English phoneme-to-viseme mapping has been proposed by Pandzic
and Forchheimer 9).

In 1999, Visser, et al. 10) developed one of the first viseme-based classification
systems where a time-delayed neural network was applied to classify 14 classes of
visemes. This work has been further advanced by Foo, et al. 4),16), where adaptive
boosting and HMM classifiers were applied to recognize visual speech visemes.
Yau, et al. 11) followed a different approach when they initially examined the
recognition of 3 classes of viseme using motion history image (MHI) segmentation
and later they increased the number of visemes up to 9 classes. To describe the
lip movements in the temporal domain, 2D spatio-temporal templates (STT)
were augmented with features calculated using the discrete wavelet transform
and Zernike moments. In their approach HMM classifiers were employed to
discriminate between different classes of visemes.

Although there is a reasonably strong consensus about the set of English
phonemes, there is less unanimity in regard to the selection of the most repre-
sentative visemes. Since phonemes and visemes cannot be mapped directly, the
total number of visemes is much lower than the number of standard phonemes.
In practice, various viseme sets have been proposed with their sizes ranging from
6 12) to 50 visemes 13). Actually this number is by no means the only parameter
in assessing the level of sophistication of different schemes applied for viseme
categorisation. For example, some approaches propose small viseme sets based
on English consonants, while others propose the use of 6 visemes that are ob-
tained by evaluating the discrimination between various mouth shapes (closed,
semi-opened and opened mouth shapes). This paper adopts the viseme model
established for facial animation by an international object-based video represen-
tation standard known as MPEG-4 9).

From this short literature review, it can be concluded that a viseme is defined

as the smallest unit that can be identified using the visual information from the
input video data. Using this concept, the word recognition can be approached
as a simple time-ordered combination of standard visemes. Although words can
be theoretically formed by a combination of standard visemes, in practice viseme
identification within words is problematic since different visemes may overlap in
the feature space or they may be distorted by the preceding visemes during the
continuous speech process.

3.2 Viseme Representation in the EM-PCA Space
In order to evaluate the feasibility of the viseme representation when applied

to continuous VSR, a set of MPEG-4 visemes is extracted from input video
sequences associated with different words in our database. For instance, frames
describing the viseme [b] are extracted from words such as ‘boat’, ‘boot’, ‘batch’
etc., while frames describing the viseme [ch] are extracted from words such as
‘chard’, ‘choose’, ‘chocolate’ etc.

The feature points that generate the EM-PCA manifold surface describe partic-
ular mouth shapes or lip movements and they are manually selected to represent
visemes from spoken words. Figure 4 shows the correspondence between fea-
ture points that form the visemes manifolds and the corresponding images that
define visemes in the image domain. From this diagram, it can be observed that
frames describing standard visemes include three independent states. The first
state is the initial state of the viseme; the second state describes the articulation
process and the last state models the mouth actions associated with the relaxed
state. These frames are projected onto the EM-PCA space and the resulting
manifolds are subjected to spline interpolation, as illustrated in Fig. 5 (a). The
feature points for visemes [b], [u:] and [t] are constructed from video sequences
describing the word ‘boot’ [bu:t]. By analyzing different instances of the same
word ‘boot’, a group of features points for visemes [b], [u:] and [t] is constructed
to define each viseme in the manifold representation. These feature points are
marked with ellipsoids in the EM-PCA space to indicate the space covered by
particular visemes, see Fig. 5 (b). Based on these examples, we can observe that
visemes are too small entities to fully characterize the entire word information
in the visual domain since the transitions between visemes are not used in the
standard viseme-based speech representation. The absence of the inter-viseme
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Fig. 4 EM-PCA points generated by images sequence describing the word [ba:t].

transient information is clearly inadequate, as the mouth shapes that describe
the transitions between consecutive visemes implement the coarticulation rules
that are enforced during the continuous speech process. However, this is not the
only deficiency associated with this visual speech representation and a detailed
discussion focused on the practical problems encountered when visemes are used
to model the visual speech will be provided in the next section.

3.3 Viseme Limitations
As indicated in the previous section, the main shortcoming associated with the

viseme representation is given by the fact that large parts of the word manifold
(i.e. transitions between visemes) are not used in the recognition process. This

Fig. 5 Viseme representation. (a) EM-PCA feature points associated with visemes [b], [u:]
and [t]. (b) The regions in the feature space for visemes [b], [u:] and [t].

approach is inadequate since the inclusion of more instances of the same viseme
extracted from different words would necessitate larger regions to describe each
viseme in the EM-PCA feature space and this will lead to significant overlaps
in the feature space describing different visemes. This problem can be clearly
observed in Fig. 6 where the process of constructing the viseme spaces for two
different words (‘Bart’ and ‘chard’) is illustrated. As illustrated in Fig. 6, a large
region is required to describe the viseme [a:] in the feature space of the two
different words. Viseme [d] (green) in word [cha:d] and viseme [t] (dark green)
in word [ba:t] are in the same category of visemes and they also require a large
region in the feature space.

Another limitation of the viseme-based representation resides in the fact that
due to coarticulation some visemes may be severely distorted and even may dis-
appear in video sequences that describe visually the spoken words. For instance,
in the manifolds generated for words ‘heart’, ‘hat’, and ‘hot’ the viseme [h] is
not visually apparent as no mouth shapes are associated with this viseme when
the words are enunciated. This is motivated by the fact that the voicing of the
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sound ‘h’ occurs only at glottis and as a result the transitory information that
occurs between the viseme [silence] and the next viseme [a:] for words ‘hat’ and
‘heart’ or [o] for the word ‘hot’ may provide a richer source of information when
the EM-PCA manifolds are evaluated in the context of VSR.

These simple examples indicate that visemes do not accurately map phonemes
in the visual domain and in addition they are subjected to a large degree of distor-
tion when evaluated in continuous speech sequences. We can safely conclude that
visemes are too limited to accommodate context-dependent phonetic sequences
that are often encountered during the continuous speech process. The limitations
associated with the viseme speech representation prompted us to investigate the
development of more complex elementary speech units that are able to sample in
an elaborate manner the inter-visual context between consecutive visemes.

Fig. 6 Viseme feature space constructed for two different words. Word “Bart”-viseme [b],
[a:] and [t]. Word “chard” – visemes [ch], [a:] and [d].

4. Visual Speech Units

4.1 Visual Speech Units Modelling
The main aim of this paper is to introduce a new representation called Visual

Speech Unit (VSU) that includes not only the data associated with the articula-
tion of standard visemes, but also the transitory information between consecutive
visemes. Each VSU is manually constructed from the word manifolds and it has
three distinct states: (a) articulation of the first viseme, (b) transition to the next
viseme, (c) articulation of the next viseme. The principle behind this new visual
speech representation can be observed in Fig. 7 where a number of prototype
examples of VSUs are shown.

4.2 Visual Speech Units Training
As mentioned before, the construction of VSUs is based on adjacent “visible”

visemes that can be identified in the word manifolds (the visible visemes describe
the articulation process of lip movements that can be mapped in the visual do-
main). In the manifold representation, the visible visemes are represented as a
unique region in the EM-PCA feature space. Using this approach, the VSUs as-
sociated with the word ‘boot’ are: [silence-b], [b-u:] and [u:-t], they are displayed
in Fig. 8 (a).

To apply the VSU representation to visual speech recognition it is necessary
to construct a mean model for each class of VSU. To facilitate this process,
the interpolated word manifolds are re-sampled uniformly into a fixed number of
feature-points. In order to generate standard VSUs manifolds for training and
recognition tasks, the re-sampling procedure will generate a pre-defined number
of keypoints that are equally distanced on the interpolated manifold surface. We

Fig. 7 Visual Speech Unit examples. (a) VSU prototypes: [silence-b], [ä-b] and [æ-b]. (b)
VSU prototypes: [b-a:], [b-i] and [b-u:].
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Fig. 8 The calculation of the VSU mean models. (a) Five manifolds of the word [bu:t] (black
line), four visible visemes :[silence] (gray), [b] (blue), [u:] (red) and [t] (cyan). (b)
The VSU manifolds extracted and re-sampled: [silence - b] (blue), [b-u:] (red), [u:-t]
(cyan) and [t-silence] (yellow). (c) The mean model for all VSUs are marked in black
in the diagram [silence-b](black line), [b-u:] (black circles), [u:-t] (black cross) and
[t-silence] (black dot).

have determined through experimentation that optimal results are achieved when
the interpolated manifolds are uniformly resampled using 50 keypoints. This
re-sampling procedure ensures the identification of a standard set of features
(keypoints) as illustrated in Fig. 8 (b).

The keypoints for each VSU are manually extracted from different instances of
the same word and they are used to train the HMM classifiers and to calculate the

Fig. 9 The VSU training process.

Fig. 10 The VSU classification process.

mean model. The procedure applied to determine the mean models for all VSUs
contained in the word ‘boot’ is illustrated in Fig. 8 (c). In the implementation
presented in this paper, to minimize the class overlap it has been trained one
HMM classifier for each VSU class. The procedure applied to train the HMM
classifiers is depicted in Fig. 9.

4.3 Registration between VSU and Word Manifolds
The VSU registration and classification process is outlined in Fig. 10. The VSU

recognition is carried out at word level and it can be viewed as a competitive
process where all VSU mean models are registered to the interpolated manifold
that is calculated from the input video sequence. In this fashion, we attempt
to divide the word manifold into a number of consecutive sections, where each
section is compared against the mean models of all VSUs stored in the database.
To achieve this, we need to register the VSU mean models with the surface of the
word manifold. In this work the registration between VSU mean models and the
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surface of the word manifolds is carried out using the Dynamic Time Warping
(DTW) algorithm. DTW is a simple technique that has been commonly used in
the development of VSR systems to determine the similarity between time series
and to find corresponding regions between two time series of different lengths 15).
Let X and Y be two time series, of lengths |X| and |Y|, where W = w1, w2, . . . , wK

is the warp path (max(|X| , |Y |) ≤ K < |X| + |Y |), K is the length of the warp
path, wk = (i, j) is the kth element of the path, i is the index for time series
X and j is an index for time series Y. The optimal warp path is calculated by
minimizing the fitting cost between the two time series as follows:

Dist(W ) =
K∑

k=1

Dist(wki,wkj) (3)

where Dist(W ) is the distance (typically the Euclidean distance) associated
with the warp path W, and Dist(wki,wkj) is the distance between two data
points with indexes i and j. The warp path must start at the beginning of each
time series and finish at the end of both time series. This ensures that every
element of each time series is used in the calculation of the warp path.

The VSU recognition process is implemented as a two-step approach. In the
first step we need to register the VSU mean models to the word manifold using
DTW, while in the second step we measure the matching cost between the VSU
mean models and the registered section of the manifold using HMM classification.
We have adopted this strategy to avoid the identification of the maximum likeli-
hood estimate of the parameters of the HMM by performing an exhaustive search
over the entire manifold data. This approach is also motivated by the intuitive
observation that the recognition of the elementary visual speech units (VSUs)
is based on a sequential process. The proposed two-step recognition procedure
is applied for all VSUs contained in the database and the complete registration
process of the word ‘chard’ is illustrated in Fig. 11.

4.4 HMM Classification
The lips motions associated with VSUs can be partitioned into three HMM

states using one Gaussian mixture per state and a diagonal covariance matrix.
The first state describes the articulation of the first viseme of the VSU. The
second state is defined by the transition to the next viseme, while the third state

Fig. 11 VSU registration and classification. (a) The registration of three classes of the VSU
Class 1: [silence-b] (red line); Class 2: [silence-ch] (purple line); Class 3: [silence-a:]
(blue line) to the word manifold (black dotted line). (b) Registration between the
[silence-ch] VSU mean model and the word manifold. The [silence-ch] VSU mean
model achieved the best matching cost (evaluated using a three-state HMM classifi-
cation).

is the articulation of the second viseme. Figure 12 (a) illustrates the partition
of the VSU into a sequence of three hidden states.

In the implementation detailed in this paper, the unknown HMM parameters
are iteratively estimated based on the training samples using a Baum-Welch
algorithm. We have constructed one HMM classifier for each class of VSU and
one HMM classifier for each viseme as well. Each trained HMM estimates the
likelihood between the registered section of the word manifold and the VSU mean
models stored in the database. The HMM classifier that returns the highest
likelihood will map the input visual speech to a particular class in the database.
Figure 12 (b) shows one example where the mouth shapes associated with the
[b-a:] VSU are modelled using three-state HMMs.
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Fig. 12 (a) HMM topology for VSU. (b) The partition of the manifold of the VSU - [b-a:]
using HMMs.

5. Experimental Results

For evaluation purposes it has been created a database that is generated by
two speakers. This database consists of 50 words (Table 1) where each word is
spoken 10 times by speaker one and 20 words where each word is spoken 6 times
by speaker two. The words were selected to generate a complex testing scenario
that allows the evaluation of the proposed visual speech modelling strategy based
on VSUs when included in the development of a VSR system. In this regard,
in our database we have included simple words such as ‘boat’, ‘heart’, ‘check’,
etc. and more complex words such as ‘Barbie’, ‘Hoover’, ‘bookman’, ‘chocolate’,
etc. The words contained in the database facilitate the evaluation of the viseme
and VSU speech representations in the presence of contextual viseme distortions,
which is one of the main goals of this paper. In our study we have conducted the

Table 1 Word database.

Speaker Words

1 Bart, boat, beat, bet, bird, boot, barbie, book, beef, barge, birch, bookman,
batch bobby, beefalo beautiful, before, heart, hot, heat, hat, hook, harp, hobby,
hoover, half, home, chard, choose, cheat, check, charge, cheap, channel, charm-
ing, chocolate, chief, wart, zart, fast, banana, January, truth, part, put, mart,
mood, I, bar, card.

2 Bart, boat, beat, boot, heart, hot, heat, hook, charge, choose, cheat, check, wart,
zart, fat, bar, art, ill, oat, fool.

Table 2 The set of MPEG-4 visemes.

Viseme Number Phonemes Example Words No. of samples

1 [b], [p], [m] boot, part, mart 300
2 [s], [z] zart, fast 30
3 [ch], [dZ] chard, charge 150
4 [f], [v] fast, hoover 80
5 [I] beat, heat 130
6 [A:] Bart, chard, 250
7 [e] hat, bet 130
8 [O] boat, hot 100
9 [U] hook, choose 80
10 [t, d] boot, bird, 190
11 [h, k, g] card, hook, 130
12 [n,l] banana 20

Table 3 60 classes of visual speech units.

VSU Groups Numbers VSUs

Group 1: 9 [silence-b], [silence-ch], [silence-z], [silence-f], [silence-a:],
[silence-o], [silence-i:], [silence-e], [silence-u:]

Group 2: 16 [a:-silence], [o-silence], [æu:-silence], [u-silence], [k-silence], [i:-
silence], [ch-silence], [f-silence], [m-silence], [ing-silence], [æ-
silence], [p-silence], [et-silence], [g-silence], [s-silence], [ë-silence]

Group 3: 35 [b-a:], [b-o:], [b-i:], [b-u:], [b- ë], [b-æ], [a:-t], [a:-b], [a:-f], [a:-g],
[a:-ch], [o-b], [o-t], [o-k], [i:-f], [i:-p], [i:-t], [u:-t], [u:-k], [u:-f],
[æ-t], [f-ë:],[f-o], [k-m], [f-a:], [w-a:], [z-a:], [a:-t], [ë:-n], [ë:-ch],
[n-a:], [a:-n], [ch-a:], [ch-u:], [ch-i:]

experiments to evaluate the recognition rate when 12 classes of visemes 9) and 60
classes of VSUs (Table 2 and Table 3) are used as speech elements. As indicated
in Table 3, the VSU classes are divided into three distinct groups: Group 1
(First VSUs) contains the VSUs that start with the state [silence], Group 2
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(Last VSUs) contains the VSUs that end with [silence], while Group 3 contains
the ‘middle’ VSUs (middle VSUs are the speech elements that are not defined by
transitions [silence - viseme] and [viseme - silence]). The main motivation behind
the decision to segregate the VSUs classes into three groups is twofold. First,
this approach allows us to evaluate the drop in classification accuracy associated
with the middle VSUs when compared with accuracies achieved by the VSUs
contained in Groups 1 and 2. The drop in classification accuracy for middle
VSUs is expected since the coarticulation rules distort more the visual context
associated with this category of VSUs than the visual context associated with the
VSUs contained in Groups 1 and 2. Second, this approach opens the possibility
to assess in greater details the performance of the proposed VSR system when
evaluated on data generated by multiple users.

Although 60 classes of VSUs do not cover the entire spectrum of possible viseme
combinations, they allow us to conduct detailed experiments to assess the per-
formance of the proposed visual speech representation when compared to that
achieved by the standard MPEG-4 visemes. To avoid the bias in the training
stage, as the number of words generated by the two speakers is different, we
elected to independently train the HMM classifiers for each speaker. The segre-
gation of the training stage was also motivated by the substantial differences in
appearance between similar categories of mouth shapes that were encountered in
the image data generated by the two speakers (one male and one female). It is
useful to note that the database generated by the second speaker is defined by a
smaller number of words when compared to that generated by the first speaker.
As a result not all of the 60 classes of VSUs listed in Table 3 could be generated
and tested using the database produced by the second speaker. Thus, when the
proposed system has been evaluated on data generated by the second speaker
only a subset of visemes (10 classes) and VSUs (30 classes) could be used in the
experimental activity.

The experimental tests were divided into two sets. The first tests were con-
ducted to evaluate the classification accuracy when standard MPEG-4 visemes
and VSUs are employed as speech elements and the number of words in the
database is incrementally increased. The classification results for speaker one are
depicted in Fig. 13 (a) and for speaker two are depicted in Fig. 13 (b). Based

Fig. 13 Viseme vs. VSU classification. (a) Speaker one. (b) Speaker two.

Fig. 14 Visual Speech Unit classification with respect to the number of training examples.
(a) Speaker one; (b) Speaker two.

on these experimental results, it is noticed that the correct identification of the
visemes in the input video sequence drops significantly with the increase in the
number of words in the database. Conversely, the recognition rate for VSUs
suffers a minor reduction with the increase in the size of the database.

The aim of the second set of experiments is to evaluate the performance of
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the VSU recognition with respect to the number of samples used to train the
HMM classifiers. As expected, the recognition rate is higher when the number of
samples used in the training stage is increased (Fig. 14). It can be also observed
that the recognition rate of Group 3 (middle VSUs) is lower than the recognition
rate for Groups 1 and 2. This is explained by the fact that the VSUs contained in
Groups 1 and 2 start or end with [silence] and this state can be precisely located
in the word manifold. Another motivation is given by the increased intra-class
variability associated with the middle VSUs, as the number of classes for this
category of VSU is higher than the number of VSU classes encompassed by the
Groups 1 and 2.

6. Conclusions

In this paper we have described the development of a VSR system where the
main emphasis was placed on the evaluation of the discriminative power offered
by a new visual speech representation that is referred to as a Visual Speech Unit
(VSU). The VSU extends the standard viseme concept by including in this new
representation the transition information between consecutive visemes.

To evaluate the classification accuracy obtained for the proposed visual speech
representation, we have constructed 60 classes of VSUs that are generated by two
speakers and we quantified their performance when compared with that offered
by the standard set of MPEG-4 visemes. The experimental results presented in
this paper indicated that the recognition rate for VSUs is significantly higher
than that obtained for MPEG-4 visemes.

In our future studies, we will extend the number of VSU classes and test the
developed VSR system on more complex word databases that are generated by
a large number of speakers. Future research will be also concerned with the
inclusion of the VSU based visual speech recognition in the implementation of a
robust sign language gesture recognition system.
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