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Abstract

Virtual Reality (VR) has progressed significantly since its conception, enabling 

previously impossible applications such as virtual prototyping, telepresence, and 

augmented reality However, text-entry remains a difficult problem for immersive 

environments (Bowman et a l , 2001b, Mine et a l , 1997) Wearing a head-mounted 

display (HMD) and datagloves affords a wealth of new interaction techniques Ho­

wever, users no longer have access to traditional input devices such as a keyboard 

Although VR allows for more natural interfaces, there is still a need for simple, 

yet effective, data-entry techniques Examples include communicating m a colla­

borative environment, accessing system commands, or leaving an annotation for 

a designer m an architectural walkthrough (Bowman et a l , 2001b)

This thesis presents the design, implementation, and evaluation of a predic­

tive text-entry technique for immersive environments which combines 5DT da­

tagloves, a graphically represented keyboard, and a predictive spelling paradigm 

It evaluates the fundamental factors affecting the use of such a technique These 

include keyboard layout, prediction accuracy, gesture recognition, and interac­

tion techniques Finally, it details the results of user experiments, and provides 

a set of recommendations for the future use of such a technique m immersive 

environments
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Chapter 1

Text-entry in immersive 

environm ents

1.1 Introduction and m otivation

Text-entry m immersive environments has received minimal research m compa­

rison to more traditional interaction techniques such as selection, manipulation 

and travel There are two central reasons for this firstly, virtual reality (VR) 

traditionally offers natural interaction with objects (Rather then issuing a com­

mand to delete a virtual object, a user simply picks it up and puts it in the virtual 

bin), secondly, usable and effective text-entry techniques are difficult to design 

and implement (Bowman et a l , 2004) Nevertheless, we believe that text-entry 

is an im portant feature which is significant for wider adoption of VR as a tech­

nology Command-line entry remains the user interface technique of choice for 

computer power users (Jacob, 2000), allowing users to express complex possibi­

lities rapidly and offering significant task efficiency through the use of scripting 

Similarly, m VR, typed commands offer the possibility for powerful interaction, 

through the use of natural language interfaces (Kelleher, 2003) Aside from is­

suing system commands, there are other scenarios where text-entry is valuable 

m virtual environments Collaborative work is a typical activity performed m

1



1 2 Text-entry techniques m immersive environments

VR Communication is possible through speech However, the ability to take 

notes within the environment offers users persistent data which is less likely to 

be forgotten after a conversation has ended Similarly, users touring virtual ar­

chitectural walkthroughs can annotate their environment, leaving details about 

what changes should be made without having to disengage from the environment 

The following chapter reviews the previous text-entry research m immersive 

environments It proposes an alternative text-entry technique, and details its 

design and implementation

1.2 Text-entry techniques in immersive environments

Previous techniques for text-entry in immersive environments are varied They 

include speech, chorded keyboards, pen and tablet techniques, and various gloved 

techniques Each tries to overcome the inherent difficulty a designer faces when 

trying to design a text-input technique for a system without access to a standard 

keyboard

1 2  1 Speech

Speech input offers what might seem like the most ideal solution to the natural 

interface offered by VR and was first used by Bolt (1980) m his famous “Put That 

There” system over 20 years ago However, although considerable advances have 

been made m speech recognition m the intervening years -  with vocabulary sizes 

increasing from 1000 words to 230,000 (Keenan, 2002) -  speech is not ideal for 

several reasons Typically, speech recognition systems require significant training 

for accurate dictation Even with extensive training, they suffer m noisy envi­

ronments, and are inefficient for text-editing and manipulation (Schneiderman, 

2000) Despite 20 years worth of advances, speech input is not commonly used 

for 2D user interfaces, as users are sensitive to the lack of privacy, the perception 

of bothering others around them, and feel an unease or awkwardness talking to

2



1 2 Text-entry techniques in immersive environments

machines (Bowman et a l , 2004)

Although many of these problems will no doubt be addressed, with future sys­

tems being user-mdependent, requiring little or no training, a more fundamental 

problem exists which was recognised by Schneiderman (2000) His experiments 

found that users had difficulty in completing tasks which required both the use 

of speech and memory In a word processing experiment, users were required to 

memorise an equation, issue a voice command to “page down”, and then type the 

memorised equation Schneiderman found tha t users repeatedly scrolled back to 

review the equation, as speaking the commands appeared to interfere with their 

retention Schneiderman argued that this was because both activities required 

the use of limited short-term or acoustic memory Therefore, because physical 

activity is handled by another part of the bram, it is easier to think and type, 

than it is to think and talk

1 2  2 Pen and tablet techniques

The Virtual Notepad (Poupyrev et a l , 1998a) draws from the ubiquitous everyday 

activity of writing It combines a spatially tracked pressure-sensitive graphics 

tablet, pen, and handwriting recognition software Users are able to take notes 

and annotate documents without being forced to disengage from VR m order 

to use a keyboard The system is activated by bringing the pen close to the 

tablet, whereby the user is presented with a virtual notepad and pen As the 

user writes on the physical tablet, the virtual pen writes on the virtual notepad 

Handwriting is both simple and intuitive, thus users require very little time to 

adjust to the system However, the system suffers from latency problems, and so 

there is considerable lag between the user writing and the visual representation 

on the notepad

W ith handwriting recognition disabled, the Virtual Notepad produces digital 

ink, allowing users to take notes, which can be read at a later stage However, 

the digital ink is not machine readable, which means that it cannot be used to

3



1.2. Text-entry techniques in immersive environments

Figure 1.1: Virtual Notepad (From Poupyrev et al, 1998a)

issue commands, or be searched at a later date. Alternatively, the system can 

be used with recognition enabled. However, character recognition is typically 

inaccurate unless specialised character sets such as Graffiti (PalmOne Inc., 2004) 

are employed. While accurate, these slow text-entry, requiring users to learn a 

specialised alphabet which must be entered separately, one character at a time.

The use of a pen and tablet in VR allows for many techniques, which, while 

designed for use on small mobile devices, are nevertheless equally applicable to 

VR. Such techniques include the standard soft virtual keyboards, found on most 

PDAs, as well as continuous stroke techniques such as Quikwriting (Perlin, 1998) 

and Cirrin (Mankoff and Abowd, 1998) (Figure 1.2a and 1.2b). Adaptive techni­

ques, such as Dasher (Ward et a l, 2000) and Hex (Williamson and Murray-Smith, 

2003), which use probabilistic data based on linguistic models to alter the user 

interface depending on text typed are also suitable candidates for pen and tablet 

interfaces (Figure 1.3a and 1.3b).

The largest drawback of pen and tablet techniques is tha t in order to see 

the virtual tablet users must hold it up in front of them, which is tiring with 

prolonged use. The users are also forced to have a pen and tablet constantly in

4



1.2. Text-entry techniques in immersive environments
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Figure 1.2: Quikwriting (a) and Cirrin (b) (From Perlin, 1998 and Mankoff 
and Abowd, 1998)
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Figure 1.3: Dasher (a) and Hex (b) (From Ward et al, 2000 and Williamson 
and Murray-Smith, 2003)
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1 2 Text-entry techniques in immersive environments

their hand, which limits the number of alternative interaction methods they can 

avail of withm the system

1 2  3 Chorded keyboards

Chorded keyboards such as the Twiddlerll (2004) allow a user to enter text 

with just one hand Their reduced size, allowing them to fit comfortably m one 

hand, necessitates the use of fewer physical keys the Twiddlerll has just 18 

keys However, by pressing several of the 18 buttons simultaneously users can 

emulate the 101 keys on a standard keyboard Although expert users can type at 

speeds of up to 60 WPM, beginners are forced to learn a complicated alphabet 

of chords before they begin to type As with the pen and tablet technique, most 

chordmg keyboards require a user to carry an extra device Exceptions to this, 

Thumbcode (Pratt, 1998) and Chordmg Glove (Rosenberg, 1998) offer similar 

text-entry techniques with the buttons incorporated into a glove which is worn 

by the user

1 2  4 Gloved techniques

Datagloves are commonly used for interaction m immersive environments, allo­

wing the wearer to interact m a natural way with virtual objects A text-entry 

technique which uses datagloves is thus likely to be easily incorporated into any 

immersive environment

Sign language is one option for gloved data entry Grimes (1983) secured a 

patent on a dataglove which was described as a man-machine interface “for trans­

lating discrete hand positions into electrical signals representing alpha-numeric 

characters” Grimes’s “Digital D ata Entry Glove” incorporated sensors which 

measured both finger flexion and contacts at key positions as well as hand orien­

tation The glove was never put into actual use, or made commercially available 

(Sturman and Zeltzer, 1994) Furthermore, gesture recognition was hard-coded 

into Grimes’s glove m order to recognise sign language Other more flexible sign

6



1 2 Text-entry techniques m immersive environments

language recognition techniques have been developed since Grimes’s Digital D ata 

Entry Glove Krammer’s Talking Glove project (Kramer and Leifer, 1989), was 

designed to convert American Sign Language finger spelling into synthesised voice 

with a early version of the CyberGlove Kadous (1995) used a M attel Power Glove 

to recognise 95 different Australian Sign Language signs with 80 percent accuracy 

Finally, Fels and Hinton (1993) created a system which recognised 66 root words 

with 5 possible suffixes Although these systems were not designed specifically 

for immersive environments, they do allow for the conversion of hand motion into 

text However, each of these methods has the same fundamental problem, each 

requires significant training, as a signing language must be learnt before it can 

be used

An alternative to learning a new signing language is to draw from the most 

common data-entry device, the keyboard K itty (Mehring et a l , 2004) attem pts 

to transfer the information gamed using standard keyboards to gloves by mapping 

contact points on the gloves to a regular QWERTY keyboard layout To type, 

fingers are pressed against the various contact points on the thumb, which indicate
s

the desired row Thus, the letters Q, A, and Z, which are normally struck by 

the little finger on a regular keyboard, are typed on the glove by pressing the 

little finger on three contact points on the thumb which correspond to the top, 

middle, and bottom row of the keyboard respectively However, with no visual 

representation of the keyboard offered to users, the system is only suitable for 

touch-typists The Finger-Joint Gesture (FJG) glove (Goldstein and Chmcolle, 

1999) uses a similar technique to Thumbcode (Pratt, 1998), with three keys on 

each fingers which are pressed by the thumb Although designed primarily for 

numeric entry, the FJG  design emulates the keyboard of a mobile phone and thus 

could be used to mimic any of the text-entry methods used on modern mobile 

phones

A similar technique to Kitty, but one which provides better visual feedback, 

is the pinch keyboard (Bowman et a l , 2001b) It uses FakeSpace Pinch Gloves

7



1 2 Text-entry techniques m immersive environments

combined with two six degree-of-freedom (DOF) trackers, with a visual represen­

tation of a keyboard also provided Based on the ubiquitous QWERTY keyboard 

layout that users are familiar with, the system requires users to pinch the thumb 

and any finger to represent a key press for that finger Thus a pmch between 

thumb and index of the left hand would correspond to F  if the home row were 

active Active rows (top, home and bottom) are selected by moving the hands 

closer or further away from the user’s body Inner keys (G  & H  on home row) 

are selected by rotating the hand inward Special gestures are provided for space, 

delete, etc Visual feedback is provided which displays the currently active keys 

Although easy to use, typing was slow for beginners, 3 minutes for sentences 

of 6-8 words W ith extensive practice the designers of the system were able to 

reduce this to 45 seconds or roughly 12 to 15 words-per-mmute (WPM) Inte­

restingly, although most users tested were comfortable touch-typists, there was 

little transfer of this knowledge to the pmch keyboard and considerable time was 

spent searching for the correct key

Finally, Evans et al (1999) suggested an alternative virtual keyboard techni­

que, VType Rather then using 3D trackers to indicate the desired row, VType 

mapped the fingers of two 5DT datagloves to the keys they would strike on a 

QWERTY keyboard, and used a disambiguation algorithm to predict the in­

tended keys at the end of each sentence We believe the predictive text-entry 

m immersive environments, suggested by Evans et al (1999), although showing 

promise, is limited m its current form VType is designed for use in immersive 

environments However, m practice, keys are indicated visually by attaching pa­

per keys to the gloves VType provides no method for the correction of incorrect 

predictions, nor any method for correcting human typing errors Instead, Evans 

et al focus on the readability of sentences that contained errors Our work builds 

upon the technique outlined by Evans et al It explores the practical issues m 

using such a system and attem pts to augment VType in several key areas
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-♦ -S p e e c h  

-■ -P e n  & tablet 

-A -P in c h  Keyboard 

Chord keyboard

12 24 36 48 60 72

Figure 1 4 Comparison of CPM for four immersive text-entry techniques 
speech, a chordmg keyboard, a pinch keyboard and a soft key­
board (From Bowman et a l , 2002)

1 2  5 Empirical comparisons of immersive text-entry techniques

Bowman et al (2002) compared four immersive text-entry techniques speech, 

a chordmg keyboard, a pinch keyboard, and a soft keyboard Voice input was 

achieved using a wizard of oz technique, users spoke one letter at a time into a 

microphone, and a hidden evaluator listened to the users utterances and typed 

the correct letter on a keyboard A Twiddlerll (2004) was used for the chordmg 

keyboard The soft keyboard was implemented with a tracked pen and tablet 

The experiment measured both the text-entry rate achieved with each technique, 

as well as the subject comfort experienced using each technique

The results, which measured characters-per-minute (CPM), showed speech to 

be the most efficient technique, followed by the soft keyboard and the pmch key­

board, with the chordmg keyboard proving the slowest of all techniques (Figure 

1 4) However, based on subjective ratings by users, no technique offered clear 

advantages Although fastest, speech seemed tedious The soft keyboard resulted 

m a high degree of neck and arm strain (Figure 15) Finally, the Twiddlerll was 

considered the least appropriate for immersive environments However, this was 

most likely due to the fact that users were unfamiliar with the required chords 

Thomas et al (1997) evaluated three text-entry techniques for wearable com­

puting a Kordic keyboard, a forearm keyboard, and a soft keyboard The Kordic

9



1 2 Text-entry techniques m immersive environments
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F ig u re  1 5 Comparison of comfort ratings for four immersive text-entry tech­
niques speech, a chordmg keyboard, a pmch keyboard and a soft 
keyboard (From Bowman et a l , 2002)

keyboard was a chord keyboard similar to the Twiddlerll (2004) The soft key­

board was accessed using a belt mounted mouse Finally, the forearm keyboard 

accessed using the users dominant hand, and was attached to the non-dommant 

arm While the test was designed to evaluated text-entry techniques for mobile, 

wearable computers, both the Kordic keyboard and soft keyboard could be used 

in conjunction with a HMD as they do not require direct sight to be used Alt­

hough the forearm keyboard could potentially be used for touch-typing, where 

users did not look at the keys, it was not used m this manner for the experiments 

Thomas’s (1997) study found tha t the highest text-entry rate was achieved 

with the forearm keyboard This was followed by the soft keyboard, with the 

lowest speed being recorded with the Kordic keyboard (Figure 1 6) Steady gams 

were made over the course of the experiments with all techniques However, 

with over 5 hours training, the text-entry rate of the Kordic keyboard remained 

below 25 CPM (5 WPM) The speed of the soft keyboard was attributed to 

the poor performance of the belt mounted mouse, which users found tirmg and 

uncomfortable to interact with

Finally, Osawa (2002) conducted an experiment to contrast speech, a 3D vir-
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-Forearm  

-V irtua l keyboard 

- K ordic

Figure 1.6: Comparison of CPM for three immersive text-entry techniques: 
a forearm mounted keyboard, a virtual keyboard, and a Kordic 
keyboard (From Thomas et al, 1997).

(a) (b)

Figure 1.7: Virtual 3D keyboard (a) and Speech and gesture interface (b) 
(From Osawa and Sugimoto, 2002)
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tual keyboard (Figure 1 7a), and a technique that combined of speech and gesture 

(Figure 1 7b) Osawa’s 3D virtual keyboard widget was designed for interaction 

with a spatially-tracked dataglove Users pressed virtual keys m the same manner 

as they would on a standard keyboard Speech input was preformed using the 

recognition engine provided with Microsoft Office XP The combined speech and 

gesture technique, involved selecting correct utterances from predictions made by 

the system as a user spoke Suggested words were presented m 3D lists and could 

be ignored, selected or combined to create sentences

The results of the experiments showed no statistically significant effect of 

input technique on text-entry rate The virtual keyboard had the fastest average 

speed, followed by the speech and gesture, and finally the speech only technique 

A subjective questionnaire revealed that of the three, the speech and gesture, and 

virtual keyboard techniques were preferred, with the virtual keyboard deemed the 

most appropriate for precise text-entry m immersive environments

1 2  6 R eview  and discussion

Though desirable, no elegant solution exists for text-entry m immersive environ­

ments Speech is unsuitable for many of the same reasons it is not used as a 2D 

technique Chordmg techniques require considerable training, and are frustrating 

for beginners Pen and tablet techniques are fast, yet tirmg with prolonged use, 

and limit alternative interaction possibilities Glove-based techniques, offer the 

most versatile solution They incorporate existing input hardware and do not 

require additional devices to be carried by the user The pmch keyboard (Bow­

man et a l , 2001b) is perhaps the most elegant of these, and has many positive 

elements It offers users a visual representation of the keyboard, an intuitive 

interface, and is quickly learnt by beginners However, the large movements ne­

cessary for row selection, and the lack of muscle memory transfer, result m slow 

text-entry rates VType (Evans et a l , 1999) provides an interaction style that 

is closer to the typing motion of a regular keyboard, and is thus more likely to
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F igure  1.8: Proposed solution

allow muscle memory transfer. However, the lack of a virtual keyboard, and the 

ability to correct predictions, considerably limit its usefulness. An ideal gloved 

solution, is one which combines aspects of both techniques.

1.3 P roposed  techn ique

We propose the following technique: when text-entry is required in a virtual 

environment the user is presented with a graphical representation of a keyboard, 

with each finger mapping to a column of keys. To type, the user simply flexes 

the relevant finger to select the corresponding column. After a sequence of finger 

flexes, a dictionary is consulted and the user is presented with the predicted word. 

Users may rotate through alternative matching words to indicate the desired word 

if the initial prediction is incorrect.

Having defined the basic technique, the crux of our research will focus on 

the main factors affecting its use: prediction accuracy, keyboard layouts, gesture 

recognition, and interaction techniques. Some of these areas are interdependent; 

the interaction techniques used will depend on the gestures which can be recog­

nised; and the accuracy of the predictions will depend, as well as the keyboard 

layout employed. The design of the keyboard and the interaction techniques used
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will depend on the gestures which we can recognise and the accuracy of the pre­

diction system Finally, the prediction accuracy of the system will be depend 

on the language model used, but will also be affected by the keyboard layout 

employed

1 4 Design m ethodology

The design of our text-entry technique, follows the iterative evolution model 

common m many design methodologies, and is influenced by (Preece et a l , 1993, 

Gabbard et a l , 1999, Johnson, 1992, Bowman, 1999)

An initial evaluation identified keyboard-layout, predict ion-accuracy, and in­

teraction techniques as fundamental factors affecting the use of the system This 

was followed by a prototype design Through iterative, formative evaluation this 

evolving prototype helped to give a greater insight into the system requirements 

Informal hallway user testing identified user factors tha t simple task analysis 

might not have otherwise identified Gesture recognition difficulties became ap­

parent as an essential factor affecting the use of the system Minor elements, such 

as the potential benefits of word completion were also examined at this stage 

These tests were used throughout the design process to verify or disprove poten­

tial improvements to the system From this iterative evolution, four key factors 

were identified as central to the use of predictive virtual keyboards prediction ac­

curacy, keyboard layouts, gesture recognition, and interaction techniques These 

four fundamental factors are examined m greater detail m Chapters 3 through 6 

Finally, the overall merit and usability of the system, and effects of various 

keyboard layouts, visual aids and interaction techniques are evaluated m  a larger 

summative evaluation The results of this evaluation lead to quantitative per­

formance results, as well as a set of guidelines for the future use of predictive 

text-entry
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1 5 Thesis outline

1 * i

F igure 1 9 Design methodology

1.5 Thesis outline

In this chapter we have proposed a predictive text-entry technique for immersive 

environments which combines 5DT datagloves, a graphically represented key­

board, and a predictive spelling paradigm We have identified the fundamental 

factors affecting the use of such a technique keyboard layout, prediction accu­

racy, gesture recognition, and interaction techniques

In Chapter 2 we review previous work m the four core areas central to the 

use of predictive text-entry m immersive environments In Chapter 3 we will
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examine the design of optimised keyboards for ambiguous text-entry, developing 

a keyboard designed to minimise ambiguity while typing Chapter 4 will explore 

the prediction accuracy of ambiguous keyboards, m particular we will examine 

the effects of language modelling on accuracy with standard and optimised key­

boards In Chapter 5 we will tackle the problem of gesture recognition suitable for 

predictive text-entry We will contrast the gesture recognition techniques suitable 

for identifying key-press postures We will focus on the problem of sympathetic 

bending, and the associated recognition errors Chapter 6 will discuss the de­

sign of interaction techniques suitable for immersive text-entry with ambiguous 

keyboards Ultimately, any user interface must be subject to user testing, which 

can be used both for the identification of design problems, and to compare and 

contrast potential designs Chapter 7 discusses the results of both formative and 

summative evaluations conducted

Although examined separately m the following chapters, many of these core 

issues are interlinked Chapter 4, which focuses on prediction accuracy, will be 

influenced by the accuracy of the optimised keyboards created m Chapter 3 

Interaction techniques, designed m Chapter 6, will be influenced by both the 

gesture recognition capabilities and prediction accuracy

Finally, Chapter 8 combines the results of Chapters 3 to 7 to provide a de­

tailed methodology for predictive text-entry m immersive environments This 

methodology summarises the results of our experiments, and provides a set of re­

commendations for the use of ambiguous text-entry m immersive environments
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Chapter 2

Predictive text-entry in 

immersive environments: 

theory and problems

/
2.1 Introduction

In this chapter, we review the four core areas central to the use of predictive text- 

entry in immersive environments Section 2 2 will review prediction accuracy, 

and the techniques employed to resolve the inherent ambiguity caused by placing 

multiple letters on one key Section 2 3 examines the design of keyboard layouts, 

the reasons for their optimisation, and techniques employed to do so Section 

2 4 discusses gesture recognition, the types of gestures relevant to virtual typing, 

and the relevant techniques used to recognise them Finally, Section 2 5 considers 

interaction m immersive environments, focusing on those suitable for interaction 

with virtual keyboards
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2 2 Prediction accuracy of ambiguous keyboards

2.2 Prediction accuracy of ambiguous keyboards

Shannon (1951) reports experiments to calculate the entropy of the English lan­

guage Entropy is a measure of the average information content of an message 

source If plain text is optimally compressed into binary digits, the entropy of the 

language is the average number of binary digits required per letter of the original 

text (Ward, 2001) Shannon conducted experiments m which users were asked to 

predict the next letters of a sentence, only proceeding past each letter when they 

guessed correctly An example result looked as follows

T i H \ E \ R ^ E \  _ 5 12 S 1  _ i  N 2 O 1  _ i  R 1 5 E 1 V 1 7 E 1 R 1 S 1 E 2  - 1  O 3 N 2 -1  A 3

The subscript represents the number of guesses needed, and _ represents a 

space Through these experiments, he showed that the entropy of the English 

language was roughly 1 3 bits per character In doing so he demonstrated the 

redundancy which exists withm the English language In an experiment, subjects 

were able to use this redundancy to predict the next letter with high accuracy, 

subjects were able to guess 79 of 102 letters on their first guess Language pre­

diction systems attem pt to harness this redundancy to aid them in accurate 

prediction during text-entry

2 2 1 Word prediction and word com pletion

A distinction is made at this point between the terms word prediction and word 

completion Word completion refers to the technique whereby complete words 

are offered to users as they type based on the text that they have entered until 

that point, thus potentially saving the user several key-stokes In systems with 

unambiguous keyboards, this technique is often also commonly referred to as 

word-prediction However, this can lead to confusion as word prediction is also 

the term  used when text-entry is performed on an ambiguous keyboard As
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2 2 Prediction accuracy of ambiguous keyboards

the user types on an ambiguous keyboard there is an inherent uncertainty as to 

the intended letter or word typed The letter or word offered by the system is 

essentially a guess, or a prediction of the user’s intention This is the meaning we 

refer to when discussing word prediction throughout this thesis Thus, predicted 

words refer to the current interpretation(s) of the ambiguous sequence typed by 

the user, while complete words refer to words offered by the system, while the 

user is typing, which are longer then the current predicted word

2 2 2 Am biguous text-en try

The mapping of multiple letters to one key m order to reduce the number of keys 

that are needed is a widely used technique It was initially suggested indepen­

dently by Glaser (1981), and Johnson and Hagstad (1981) as a communication 

aid for people with speech impairments It has since been adapted for text-entry 

m many conditions where a standard keyboard is not feasible or desirable

1 2
A B C

3
DEF

4
G H I

5
J KL

6
M N 0

7
P Q R S

8
TU V

9
WX YZ

Figure 2 1 Telephone keypad

Mapping multiple letters to each key leads to an inherent ambiguity when each 

key is pressed There are various methods for resolving this ambiguity, most of 

which can be classed as either letter-level or word-level disambiguation methods

2 2 3 Let ter-level disam biguation

Letter-level disambiguation typically requires the user to press 2 keys per letter 

Although there are several variations, all typically require 1 key-press to select a
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group of letters, and a second key-press to uniquely identify the required letter 

For example, the letter C might be selected on the keyboard in Figure 2 1 by 

pressing the 2 key to select the letter grouping ABC, followed by the 3 key to 

indicate the 3rd letter m the grouping An alternative technique, often referred to 

as Multitap, requires users to scroll through the key groups to select the required 

letter, thus the letter C on the keyboard m Figure 2 1 would be selected by three 

presses of the 2 key

2 2 4 W ord-level disam biguation

Word-level or dictionary-based disambiguation was originally suggested by W it­

ten (1982) Due to the entropy of the English language, W itten found that if 

a dictionary of 24,500 words was encoded such tha t each letter m a word was 

represented by the key number on which is resided on a telephone keypad1, only 

2000 words had identical sequences Thus, the majority of words can be expressed 

unambiguously with only 1 key-press per letter when the sequence of keys entered 

is compared against a dictionary of valid words Clashing is used to describe the 

phenomenon of two or more words mapping to the identical sequence The clash- 

count for a dictionary refers to the number of words withm the dictionary tha t 

clash for a given keyboard layout The practical use of word-level disambiguation 

requires that users be afforded the ability to choose between words if there is more 

then one match for a given set of key-presses One option for this, is to offer the 

most likely word to the user, with the option of choosing the next most likely 

alternative should the first prediction be incorrect Dictionary based disambigua­

tion was suggested as a mobile phone SMS text-entry method by both Dunlop 

and Crossan (2000) and engineers at Tegic Communications (D L Grover and 

Kuschler, 1998) independently

1 Witten assigned the missing letters Q & Z to the 1 key On modern phones they are assigned 
to the 7 and 9 keys respectively

/
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2 2 Prediction accuracy of ambiguous keyboards

2 2 5 Prediction accuracy of letter-level disam biguation system s

Letter-level disambiguation was improved by Foulds et al (1987), who used letter- 

frequency statistics to predict the desired letter, allowing the user to correct the 

prediction at any point Their system was similar to M ultitap, but rather than 

rotate through letters m the order m which they appeared on the keys, Foulds 

et al suggested the use of fourth-order (quad-gram) transitional probabilities to 

disambiguate each keystroke based on the statistical relationship of the ambiguous 

characters to the previously typed words As a user presses a key, a quad-gram 

table is consulted, which provides the statistical probability of a character based 

on the 3 previously typed letters The characters on the pressed key are ranked 

and offered to the user according to there likelihood If the first character offered is 

incorrect, the user hits the key again and is offered the next most likely character 

This method was later suggested by MacKenzie et al (2001) as a text-entry 

technique for mobile phones Letterwise Although more efficient in terms of the 

average number of keystrokes required per character (KSPC), with a KSPC value 

of 1 15 compared to 2 0342 for M ultitap, Letterwise requires constant attention 

during typing W ith M ultitap, the letter B  is always entered with two presses of 

the 2 key, requiring no user attention In comparison, with Letterwise the letter 

B  may appear after 1, 2, or 3 key-presses depending on context, forcing users to 

pay close attention during typing

2 2 6 Prediction accuracy of word-level disam biguation system s

Unlike letter-level disambiguation, word-level disambiguation relies on a dictio­

nary As the dictionary increases, so does the percentage of words known, but 

the chance of an error increases too However, like let ter-level disambiguation, 

improvements m accuracy can be achieved

The use of word frequency is the most obvious method of increasing prediction 

accuracy, and is the method employed on most mobile phones (T9, 2004) Ana­
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2 2 Prediction accuracy of ambiguous keyboards

lysing the corpora -  large collections of text and speech -  from which dictionaries 

are created, we can store the frequencies with which words occur Then, when 

a sequence of key-presses matches more then one word m a given dictionary, the 

list of possible words offered are ranked according to their frequency

Although this improves accuracy, it fails to make full use of the contextual 

information available during typing Various techniques have been proposed to 

help augment the accuracy of word-level accuracy These can be broken down 

into 3 fundamental groups syntactical, statistical, and context-sensitive

Syntactical techniques

Syntactical techniques try  to use syntax to help predict the most likely word 

Words m the current sentence are tagged with parts-of-speech (POS) tags These 

tags detail the lexical type of each word, differentiating them into classes such as 

noun, verb, pronoun, adverb etc Using this information, a parser then attem pts 

to parse the current sentence based on a set grammar This grammar contains 

a set of rules, or productions, each of which expresses the ways that syntactic 

categories of the language can be grouped and ordered together (Jurafsky and 

Martin, 2000) Based on this information, ambiguous words can be ranked ac­

cording to how well they would fit into the currently parsed sentence Work in 

this area is often aimed at word completion (Guenthner et a l , 1993, Beck et a l , 

2004), where the systems are attem pting to aid m the sorting of lists of potential 

complete words However, the techniques are equally applicable to word predic­

tion Some of the problems faced when using syntactic techniques include trying 

to parse ungrammatical sentences, dealing with ambiguous words which have va­

rious possible tags, and the problem of tagging any new words entered into the 

dictionary Despite these problems, syntactic information is useful and is often 

used m combination with other techniques to augment the overall accuracy (Rua 

and Skiena, 1994, Hasan, 2003, Fazly and Hirst, 2003) Interestingly, as noted by 

Boissiere and Vigouroux (2003), most of these projects are French or German,
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2 2 Prediction accuracy of ambiguous keyboards

which are highly inflected languages English, which is less inflected, is more 

suited to statistical techniques, such as iV-gram language modelling

Statistical techniques

Language modelling is the term used to describe the use of statistical knowledge 

gamed from analysing corpora to assign probabilities to  words 7V-gram models 

use the previous N  — 1 words, to help predict the next, or N th, word Thus, given 

an 7V-gram language model, the probability P(wn | h) of the N th word u>n, given 

a history of words h can be written as P(wn | w\yw2 wn_i) In the simplest case, 

that of a 1-gram or um-gram model, the probability of a word is based solely on 

its frequency withm a corpus For N  > 1 there are various techniques which can 

be used The simplest of these being the maximum likelihood estimation (MLE) 

If we define c(w\ wn) to be the count of a specific iV-gram m our corpus, then 

we can define the probability of a bi-gram (2-gram) as follows

n ( 1 \ c{wn- i w n)
PM LEVW n W n~  l )  =  -----7----------c(wn- 1)

More generally, we can define the probability of for an iV'-gram model as

n , ...n-1 n _  « - N + l wn)PMLE\Wn I — n _ 1  -~
C(Wn-N+V

Discounting Although simple, the MLE technique is not ideal As no cor­

pus can contain every possible iV-gram, the MLE technique overestimates the 

probability of the AT-grams it has been trained on and underestimates the pro­

bability of the iV-grams tha t were not seen m the training corpus To counter 

these effects, various discounting or smoothing algorithms can be used, including 

Add-One, Witten-Bell (W itten and Bell, 1991) and Good-Turing (Good, 1953) 

These attem pt to lower the overall probability of iV-grams which have been seen, 

m order to increase the probability of Ar-grams which haven’t
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One widely used discounting strategy, and the one used m our tests, is Good- 

Turmg discounting This was first described by Good (1953), who credited Turing 

with the original idea The Good-Turmg method attem pts to re-estimate proba­

bilities of iV-grams with zero or low counts, by looking at iV-grams with higher 

counts It defines N c as the number of N-grams which occur c times This is 

referred to as the frequency of frequency c It defines c* as the smoothed count 

of TV-grams which occur c times, N c , by looking at the count of N c+i

c* =  ( c + l ) Nc±i 
N,r

Thus an estimate for the count of AT-grams which never occurred N q is achie­

ved by looking at the count of iV-grams which occurred once, N± The same is 

done to estimate the count for all grams of low counts below a threshold /c, 

above which the actual count value is considered accurate enough Thus, c* =  c 

for c > k The full equation (Prom Jurafsky and Martin, 2000) is written as 

follows

( V  4 -  1 N̂c+l _  r (k+1)Nk+i 
c* =  ( +   ̂ n ' ,for 1 < c < k_  (fc+l)JVfe+i ’ ~  -

1 Ni

Katz (1987) recommends a value of 5 for k Using this new estimation of 

N -gram counts, the discounted probability P  of a bi-gram occurring can now be 

written as

6/ i x c*{wn-iw n)P (w n wn- i )  = — ------
c(wn- 1 )

B ackoff Although discounting can be used to estimate the probabilities of N- 

grams we have not seen, another valuable source of information is lower-order N- 

grams If we have seen no occurrence of a specific tri-gram wn^ 2wn- iw n during 

training, then we can estimate its probability based on the probability of the

bi-gram wn- iw n, P (w n \ wn- \ )  If no occurrenccs of the bi-gram wn- \w n have
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been seen, then we can estimate the probability based simply on the probability 

of the um-gram probability P(w n)

The backoff AT-gram model is a non-linear method introduced by Katz (1987) 

If we have a non-zero probability for an N-gram -  because it has been seen before 

in our corpus -  we use it to determine probability If we haven’t seen an Af-gram 

before, we back off to & lower-order N-gram Formally

P (v > n  I < I w + l )  =  I wn-N + l)

+9(P(wn | w™_lf+l))a (P (w n | u!™_tf+2)

where

B( x )  =
1, if x  =  0 

0, otherwise

Here 0 indicates the binary function whereby the lower-order model is chosen 

if the higher-order model has zero probability a  is the normalisation factor, 

which is used to ensure that the lower-order model only receives a fraction of the 

remaining probability of the discounted higher-order model This is to ensure 

that the overall probability cannot be greater then 1 For an AT-1-gram it is 

computed by subtracting from 1 the total discounted probability mass for all 

AT-grams starting with tha t context, and is then distributed to all AT-1-grams 

This is then normalised by the total probability of all TV-1-grams that begin some 

N-gram Formally

/ n -l \ c(w%_N+1)>oP(Wn 1 Wn-N+1)
^'^71—N-\-l' 1 v* ¿3 ( I 71—1 \1 ~  c{ŵ _N+l)>oP{'l̂ n I Wn_N+2)

The non-linear tri-gram model, which we shall use during the course of our 

experiments, can be represented as follows
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P(w n | Wn-2Wn- l) ,  if c(wn-.2Wn-\Wn) >  0

a ( w n - l ) P ( w n  I W n -l), if c(wn_2Wn-lWn) =  0
(2 1)

and c(wn- iw n) > 0 

Oi(wn- i)P (w n), otherwise

Context-sensitive

As the name suggests, context-sensitive techniques attem pt to use context to aid 

m the prediction of more suitable words (Hawes and Kelleher, 2004, Stocky et a l , 

2004, Guenthner et a l , 1993) On a mobile phone, the words act, cat and bat 

have the same key-sequence, 228 Many mobile phones use the T9 prediction 

engine (T9, 2004), which uses a um-gram language model Statistically, the word 

act occurs more often in the English language, therefore it is offered first Thus, 

if the sentence “Yesterday a stray dog chased my ” is entered followed by the key- 

sequence 228, the word act is offered because it is most likely word statistically 

However, given the context, clearly cat is more likely to be the word intended by 

the user Context-sensitive systems, use databases of related words, which can 

be used to help re-order the offered words In the above example, the word cat 

would be related to both the words chased and dog (Hawes and Kelleher, 2004), 

and thus would be offered before the alternatives The accuracy of such systems 

depends on the strength and breadth of the underlying context database they 

use Both Stocky et al (2004) and Hawes and Kelleher (2004) perform well m 

the context of weddings and cooking, because their databases have been trained 

on large corpora on these subjects

H ybrid-system s

The techniques we have discussed are are not mutually exclusive They can be 

used m parallel (Guenthner et a l , 1993, Hasan, 2003, Beck et a l , 2004) Hasan
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(2003) uses a tri-gram language model combined with lightweight dependency 

analyses which discards unlikely syntactic sentence structures A similar techni­

que is employed by Beck et al (2004) who use grammar rules to correct the order 

of words offered by the statistical model Rua and Skiena (1994) use a tri-gram 

language model of both words and POS tags, combined with grammar rules 

Analysing complete sentences, they use the Viterbi algorithm to calculate the 

most likely words and thus the most likely intended sentence Finally, Guenthner 

et al (1993) combine syntactic knowledge with context-sensitive information

2 2 7 Open questions

Having discussed the theory of word prediction and word completion, we will now 

look at the practical questions that impact on the design of an ambiguous text- 

entry technique using these approaches There are several metrics that we can 

use to judge both word prediction and word completion systems clash count, 

percentage of words guessed correctly and percentage of words known In the 

following sections we will introduce each of these metrics and discuss how key­

board layout, language size and language model affect a word prediction or word 

completion system’s score relative to each of these metrics

Word prediction

The core issue for any word prediction system is prediction accuracy There are 

several metrics tha t can be used to measure this clash count, percentage of words 

guessed correctly, percentage of word known

The clash count of a word prediction system is the number of words m the 

system’s dictionary that share their input sequence with at least one other word m 

the system’s dictionary This is of interest because the number of clashing words 

likely during text-entry affects the interaction technique we choose W itten (1982) 

noted that only 2000 words (8%) of a 24,500 word dictionary clashed when entered 

on a telephone keypad In comparison, tests on the T9 system (D L Grover and
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Kuschler, 1998) carried out by Silfverberg et al (2000) found that 8437 words 

(95%) of its 9025 word dictionary were offered correctly first time when sorted by 

frequency (no detail is given of the exact clash count) Increasing the dictionary 

size will result m an increased clash count Test by Klarlund and Riley (2003) 

showed that on average every word m their 463,000 word dictionary clashed once 

on a telephone keypad For an ambiguous keyboard system, an im portant point 

m relation to clash count is that the distribution of letters to keys has a direct 

affect on the number of words which clash for a given dictionary

Although the clash count of a keyboard may be high, the language model em­

ployed by a system may compensate for this by predicting the correct word with 

high accuracy Thus the percentage of words guessed correctly is another useful 

metric for testing prediction accuracy Klarlund and Riley (2003) found that by 

using a tri-gram language model with their 463,000 word dictionary the percen­

tage words guessed correctly was over 97% for a QWERTY keyboard and 98% for 

an alphabetic keyboard The analysis of a system’s percentage of words guessed 

correctly can be refined by examining the percentage of words offered correctly 

on the first guess, second guess, and so on However, the interaction necessary 

with the system to choose the second or subsequent guess determines the im­

portance of the initial prediction For example, due to their limited screen space 

mobile phones only offer one prediction, thus requiring a user to scroll through 

the alternative predictions As a result, for these systems the first word predic­

ted is extremely im portant to the user In contrast, immersive environments, 

which have no screen space limitations, can show more then one prediction si­

multaneously If any of these predictions can be quickly selected from the list of 

candidates then the importance of the initial prediction accuracy is reduced 

Many word prediction systems, including the one developed in this thesis, use 

dictionary-based disambiguation For these systems a key factor m their ability 

to predict a word is having the desired word m their dictionary Consequently, 

the percentage of words known during use is therefore another useful metric for
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judging these systems However, the larger the dictionary, the more words that 

are likely to clash Consequently, this metric is often at odds with the clash count 

metric However, as the experiments by Klarlund and Riley (2003) indicate this 

may not be at odds with overall accuracy

Word completion

As we have mentioned, many of the systems we have discussed employ language 

models m order to facilitate word completion on unambiguous keyboards (Stocky 

et a l , 2004, Fazly and Hirst, 2003, Darragh, 1989) Word completion is also 

possible on ambiguous keyboards However, it will naturally be less accurate 

compared to similar systems with unambiguous keyboards This is because word 

completion systems rely on the letters of a word which have been typed thus far to 

guide the prediction of a possible complete words W ith an ambiguous keyboard, 

the letters typed thus far are not known, but rather the set of ambiguous keys 

which have been pressed, on which several letters reside Nevertheless, despite 

the decreased accuracy, using word completion may increase the typing speed 

When looking at word completion for ambiguous keyboards, we are interested 

m the effects of keyboard layout, dictionary size and language model order on 

completion accuracy, but also the effects of word list size, and word selection 

techniques As with word prediction, word completion has several metrics with 

which to evaluate its accuracy

One measure of the usefulness of a word completion system is the percentage 

of characters saved This refers to the number of characters saved through the use 

of the word completion system, relative to the total number of characters typed 

One of the key factors affecting the percentage of characters saved is the number 

of words offered at any stage The more words the completion system offers, 

the more likely it is that the word being typed can be completed by selecting it 

However, several practicalities limit the typical size of word lists offered Firstly, 

and most obviously, there is little point m offering 100 complete words, as a user
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must first scan though and locate a word before choosing it The total time 

taken to do this is unlikely to be shorter then the time taken to simply type the 

remaining letters Secondly, available screen size can affect the potential words 

offered W ith virtual keyboards and previously typed words already taking up 

screen space, there are practical limitations to the number of words that can be fit 

m the remaining space Finally, the technique employed to choose the complete 

word from the list of offered words will affect the word list size If a word list must 

be cycled through iteratively, the effectiveness of larger word lists is reduced The 

time spent reaching words further down the list will negate the potential time 

saved completing the word However, if any word offered can be chosen directly 

from a list, irrespective of its position, then larger word lists have increased 

potential Garay-Vitoria and Gonzalez-Abascal (1997) examine the effects of 

word list size on the percentage of characters saved on unambiguous keyboards 

They show that savings of over 55% and 60% can be achieved with word lists 

of 5 and 10 respectively Lesher et al (1999) demonstrate the positive effects of 

increased training text size and TV-gram order on the efficiency of completions 

with 10 words They found savings of 54% could be achieved with tri-gram 

models based on 3 million word texts As with Garay-Vitoria and Gonzalez- 

Abascal (1997), Lesher’s experiments were with word lists where any of the 10 

words could be selected explicitly This was done by pressing one of 10 keys, each 

of which corresponded to a complete word Our experiments will examine the 

effects of varying word list size, with various completion methods, and examine 

if the positive effects of iV-gram order and training size still hold with ambiguous 

keyboards

2 3 Optimising keyboard layouts

The first keyboard layout was patented m 1868 by Sholes, Glidden, and Soule 

This keyboard layout was alphabetic However, it was superseded by the familiar
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QWERTY layout m 1878 (Noyes, 1983) The locations of letters and numbers on 

keys has been a m atter of research, theory, debate, contest and patent applicati­

ons ever since (Lewis et a l , 1997) Despite the common belief the the QWERTY 

layout is sub-optimum even its strongest competitor, the Dvorak simplified key­

board layout (DSK), has failed to displace it It was officially recognised m 1971 

by the International Standards Organisation as the standard layout, and remains 

the de facto computer keyboard layout However, data input on small, reduced 

and virtual keyboards, such as those found on mobile phones or personal digital 

assistants (PDAs), has renewed interest m alternative keyboard layouts

In the following section we will discuss the keyboard layouts on both regular 

and ambiguous keyboards To avoid any confusion, we shall refer to ordinary 

keyboards, where each key maps to one letter, as explicit keyboards

2 3 1 Optimising conventional explicit keyboards

It is widely accepted that the QWERTY keyboard layout is sub-optimal2 (Lewis 

et a l , 1997) The workloads assigned to each hand and each finger are ques­

tioned, as is the amount of movement needed between rows Figure 2 2 shows 

a breakdown of these values There is a bias toward use of the left hand, and 

the work distribution of the fingers is especially uneven for the right hand Over 

52% of keys struck are on the top row, which requires movement away from the 

middle, or “home” row

The most widely known keyboard which attem pted to address these issues was 

the DSK layout Patented by August Dvorak m 1936, it was designed to  enable 

simple, rhythmic, rapid movements, m contrast to the erratic motions needed 

on a QWERTY layout (Lewis et a l , 1997) The design of Dvorak’s keyboard 

(Figure 2 3) was based on a statistical analysis on common English letter pairs

2 There is considerable doubt over the reasoning behind the design of the QWERTY layout 
There is a common misconception that it was chosen over the alphabetic to confuse and slow 
down typists, thus reducing jamming Noyes (1983) discusses some of the more plausible theories, 
the most widely accepted of which, is that commonly occurring letter combinations -  such as 
’qu? -  were separated m order to reduce jamming
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Figure 2 2 Finger and row distribution on a QWERTY keyboard layout 
(From Brown, 1992)

nmmmmmmnmmprDf̂ n

Figure 2 3 Finger and row distribution on a DSK layout (From Brown, 1992)

and attem pted to maximise the use of the home row, give the strong right hand 

more work and consequently be less tiring (Light and Anderson, 1993) Almost 

70% of typing is performed on the home row, with a larger workload given to 

the right hand, and fingers are assigned proportional amounts of work Vowels 

and frequently-used consonants were placed on opposite halves of the keyboard 

to enable quick, two handed typing of common sequences Keying sequences with 

alternative hands was shown to be faster then for same-hand entry by Kmkead 

(1975), who measured the inter key-stroke time (bi-action) of users of a standard 

keyboard (Figure 2 4)

Although it is accepted that Dvorak’s keyboard is indeed superior to the 

QWERTY layout, there is doubt as to the extent Reported values range from
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Figure 2 4 Inter-stroke typing times (ms) (From Kmkead, 1975) Times reflect 
the average time taken to hit a key depending on the hand and 
finger used to type the previous key

2 3% to an unlikely 50% (Lewis et a l , 1997) Further improvements to Dvorak’s 

keyboard were offered by Light and Anderson (1993), whose keyboard was created 

using simulated annealing However, none of the improved designs for physical 

keyboard layouts provide enough of an improvement to justify the switch from 

the QWERTY layout, due to the retraining necessary QWERTY remains the 

king of traditional keyboard layouts, and seems likely to remain so

2 3 2 Optimising virtual explicit keyboards

Virtual, or soft keyboards are keyboards which are displayed on a screen, and 

exist solely through software Although the dominance of the QWERTY key­

board layout for traditional keyboard layouts is accepted, the optimal design of 

alternative virtual or soft keyboards for small mobile devices has received conside­

rable interest (MacKenzie and Zhang, 1999, Zhai et a l , 2000, Textware Solutions,

1998) There are several reasons for this Firstly, by their nature, soft or virtual 

keyboards can be easily changed or adapted Also, 10 finger touch-typmg skills 

learnt on a regular keyboard do not transfer to on-screen stylus tapping (Zhai 

et a l , 2000), and finally, the QWERTY layout itself is even less optimal a design 

when tapping with a stylus, due to its elongated shape

The Fitaly keyboard (Figure 2 5a) designed by engineers at Textware Soluti-
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Figure 2 5 Fitaly and Opti keyboard layouts

ons (Textware Solutions, 1998), was one of the first optimised keyboard layouts 

to be designed and sold commercially for PDAs The design was based on the 

frequency of letters m the English language Letters with the highest frequency 

were placed closer to the centre of the keyboard, with less frequent letters being 

relegated to the edge The layout was created by hand and boasts WPM speeds 

of 41 95, compared to 30 for that of a standard QWERTY When designing the 

OPTI keyboard (Figure 2 5) MacKenzie and Zhang (1999) used F itts’ Law3 to 

predict the tap  time for key pairs, and then mapped the shortest tap times to 

the most common letter-pairs (digraphs) m English It was developed through 

trial and error Empirical experiments revealed that the OPTI layout resulted in 

a higher text-entry rate then conventional the QWERTY layout after 4 hours of 

practice Lewis (1999) created a keyboard using similar techniques, but sugges­

ted that users unlikely to reach expert status might benefit from an alphabetic 

keyboard, which would take advantage of the users pre-exist mg knowledge of the 

alphabet

In contrast to these, Zhai et al (2000) used computerised quantitative design 

techniques to search for an optimal keyboard layout The resulting Metropolis

3Fitts’ Law (1954, 1964) quantifies the index of difficulty ID of a movement task based on 
the distance or amplitude to move A and the width or tolerance of the region withm which the 
move terminates W , where ID — ¿052(^7-) MacKenzie (1995) provides a detailed analysis of 
its implications for movement time prediction in HCI
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(a) (b)

Figure 2 6 Metropolis keyboards original and alphabetically biased

keyboard (Figure 2 6a) was faster then both the OPTI and Fitaly layouts Like 

MacKenzie and Zhang (1999), they used F itts’ law and digram frequencies to 

estimate the cost of an arbitrary keyboard layout They then used the Metropolis 

algorithm -  a Monte Carlo method, widely used to search for minimum energy 

states -  to search for a layout which offered the lowest cost, thus maximising 

text-entry speed

Smith and Zhai (2001) later adapted their original keyboard layout (Figure 

2 6b) which was designed for expert typists, to facilitate easier learning for novice 

users They hypothesised that alphabetically biased keyboards would be easier to 

learn, as the search time would be reduced They tested novice users with both 

a standard and alphabetically biased layouts and found that beginners were 9% 

faster on an alphabetically biased keyboard This was significant, as it contra­

dicted earlier research for traditional keyboards by Norman and Fisher (1982), 

which found that alphabetic keyboards were not easy to use

Lesher and Moulton (2000) created an optimised keyboard based on letter 

7V-grams and an elliptic travel cost function defined by Levme and Goodenough- 

Trepagmer (1990) However, no user tests were performed

Finally, Hughes et al (2002) used empirical bi-action tables to create and 

assess optimal keyboard layouts Here bi-action is defined as the physical motion 

from one key to the next Rather then using a human performance model, such as
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Figure  2 7 Optimised layout based on bi-action tables

F itts ’ law, Hughes et al (2002) recorded 5 participants as they made all possible 

bi-actions for a keyboard, and measured the time for each motion The average 

time taken by each user to perform each bi-action was then stored m a bi-action 

table They combined this information with letter digraph frequencies to create 

an optimised keyboard, which had a predicted expert speed of 65 26 WPM (Figure 

2 7)

2 3 3 R educed key keyboards

Although many virtual keyboards simply reduce the physical size of each key m 

order to offer smaller keyboards suitable for mobile text-entry, another option is 

to reduce the number of keys offered These reduced keyboards can offer larger 

key sizes, but to do so must sacrifice the 1-to-l mapping of letters to keys offered 

by traditional keyboards One alternative, which allows for unambiguous typing, 

is the use of chords -  where several keys are pressed simultaneously to select one 

letter

As well as the Twiddler II, which we have previously discussed (Section 12 3), 

there exist several chord variations GKOS (2000) is a 6 key system, which uses 

various combinations of keys, similar to the Twiddler II In contrast, the half- 

QWERTY keyboard (Matias et a l , 1994), and FrogPad (1999) behave closer to 

traditional keyboards, employing shift keys which traditional keyboard users are 

familiar with The FrogPad keyboard is optimised so that the most common 15 

letters typed are the easiest to type The half-QWERTY as the name implies,
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copies the QWERTY keyboard layout The half-QWERTY mirrors the keys 

struck by the non-active hand, so the left hand little finger strikes the Q key as 

normal to select Q, but the P  key -  usually struck with the right little finger 

-  is selected by pressing and holding the spacebar and then striking the Q key 

This layout takes advantage of the knowledge already gamed from typing on a 

standard keyboard, and subjects can achieve 50% of their standard keyboard rate 

after 8 hours training

2 3 4 O ptim ising ambiguous keyboards

In contrast to chordmg keyboards, ambiguous keyboards, as we have already dis­

cussed m Section 2 2 2,̂  require only one press to select each key, relying instead 

on a disambiguation engine to identify the intended letter Their accuracy is 

dependent on a number of factors including the disambiguation engine, keyboard 

layout used, and the interaction techniques employed The accuracy improve­

ments offered by an accurate disambiguation engine, taking advantage of the 

entropy of the English language, have been discussed However, another factor 

affecting the accuracy is the keyboard layout and key-count Effective ambiguous 

keyboards have been implemented with as few as 4 keys (Harbusch and Kuhn, 

2003, Evremova et a l , 2004) Reducing the key-count will naturally increase am­

biguity and have a negative effect on the accuracy of prediction Such severely 

reduced keyboards are typically used where input capabilities are extremely limi­

ted, for example where physical disability limits motion (Kuhn and Garbe, 2001, 

Hansen et a l , 2003)

For any given key-count, the keyboard layout also effects accuracy The op­

timisation of ambiguous layouts is dependent on the disambiguation technique 

used, and the interaction techniques possible

For letter-level disambiguation on phone-pad keyboards, several layouts have 

been suggested Levine et al (1985, 1986) were the first to recognise the potential 

for increased prediction accuracy if the layout was changed to reduce ambiguity
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They used a genetic algorithm to minimise the ambiguity for letter bi-gram ba­

sed prediction In contrast, Foulds et al (1987) analysed the error rates of the 

characters on different keys and identified the mam characters which reduced the 

prediction accuracy By switching these keys, they created an alternative lay­

out which further improved accuracy Their TOC keyboard, named after the 3 

characters which were moved, predicted the correct character with an accuracy 

of 90 8% Foulds et al (1987) contrasted their optimised layout with those of 

Levine et al (1986) and found similar performance

Slight improvement of the TOC keyboard was achieved by Lesher (1998), who 

used a confusability matrix to guide an n-opt algorithm Lesher’s confusabihty 

matrix was created by simulating text-entry for a sample text T$ with a prediction 

algorithm Px For every character m the sample text, the prediction algorithm 

ranks the possible letters For every letter ¡3 which is ranked higher than the 

intended letter a 1 the value m the confusabihty matrix at position is

incremented Thus, for a given character pairing a, /?, their mutual confusabihty 

Cm(a,P) can be calculated as C(a, ft) +  C(/3, a) Lesher created an optimal 

keyboard by minimising the mutual confusabihty of characters on a keyboard 

layout

An optimised telephone key-pad layout for word-level disambiguation was 

created by Oommen et al (1991) Optimal keyboard designs were achieved by 

attem pting to minimise the number of words with identical key sequence map­

pings For any given dictionary, each word must map to a key-sequence W ith 

increased dictionary size, the potential for 2 or more words to map to the same 

key-sequence increases Oommen et al (1991) attem pted to find a keyboard 

which reduced clashing by ranking keyboards according to the number of indi­

vidual sequences they created for a set dictionary, thereby minimising possible 

clashing and, ultimately, ambiguity when typing Using a stochastic automaton 

they reduced the average number of clashes for their 1067 word dictionary to just 

57
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Similarly, (Bahuman et a l , 2000, Kuhn and Garbe, 2001, Harbusch and Kuhn, 

2003, Garbe, 2000), used ambiguous keyboards that were optimised to reduce the 

word clashing However, m contrast to the keyboard of Oommen et al (1991), 

which is optimised for users who could select any one of the ambiguous keys 

at a time, those of (Bahuman et a l , 2000, Harbusch and Kuhn, 2003, Garbe, 

2000, Kuhn and Garbe, 2001) are designed for motor impaired users, where input 

options are severely restricted These systems highlight each key in rotation, and 

users then press a key to indicate that the highlighted key is the one intended 

Optimisation of these keyboards therefore, is focussed on choosing a layout which 

would require as little cycling as possible, but also provides as few clashes as 

possible (as these also have to be rotated through) The variation in priorities 

highlights the importance of the analysing the planned interaction technique when 

optimising ambiguous keyboard layouts

2 3 5 O ptim ising keyboard layouts discussion

Although the ultimate goal of most optimal keyboards is an increase m effective 

throughput, or WPM, the design of an optimal keyboard begins with deciding 

what exactly needs to be optimised There is no definitive optimum keyboard 

layout, but rather, keyboard layouts which have been optimised with regard to 

a certain performance characteristic The optimisation of the traditional explicit 

keyboard layout for 10 fingered typing, has been the subject of considerable rese­

arch (Noyes, 1983, Lewis et a l , 1997) Here the optimisation considered was the 

reduction of the travel time of each of the fingers In contrast, reduced virtual 

keyboards for PDAs must be designed to minimise the travel time of just a single 

stylus

Optimisation of ambiguous keyboards is usually focussed on choosing the 

optimum arrangement of letters on keys The ultimate aim is to reduce the 

ambiguity and, as a consequence, the need to correct incorrect predictions Here, 

the optimal keyboard is closely linked to the prediction algorithm used and the

39



2 4 Gesture recognition

interaction possible with the system Thus, layouts optimised for letter-level 

prediction will be sub-optimal if used with word-level prediction and vice-versa 

While (Foulds et a l , 1987, Text ware Solutions, 1998, MacKenzie and Zhang,

1999) chose to optimise keyboards by hand, (Garbe, 2000, Light and Anderson, 

1993, Zhai et a l , 2000, Lesher et a l , 1998) have attem pted to use search tech­

niques such as n-opt and simulated annealing, combined with models of human 

performance and linguistic knowledge, to search for optimised layouts

In Chapter 3, we will examine the creation of keyboards optimised for word- 

level prediction for immersive text-entry

2 4 G esture recognition

Human-computer input devices can generally be categorised into two groups 

firstly there are those that monitor explicit, unambiguous actions, such as the 

depressing of a mouse button or a key on a keyboard, or the tapping of a stylus 

on a touch screen button, secondly there are passive devices, which constantly 

observe or attend the user Examples include microphones, video cameras, po­

sition trackers and data gloves, which monitor the speech, gaze, or position of 

the user The passive nature of these devices leads to the problem of interpreta­

tion of the user’s actions, which are often ambiguous Pattern  recognition is the 

identification of patterns m large datasets, it can be used to attem pt to identify 

and classify patterns from a stream of data provided by a passive device, and is 

a non-trivial task (Harhng, 1993) Gesture recognition may be viewed as a pro­

blem of pattern recognition, m which the patterns to be classified are instances of 

input from posture sensors (Watson, 1993) In the following section we will look 

at the application of pattern recognition techniques to gesture recognition and 

will review the most common recognition algorithms currently used, particularly 

those suitable for virtual keyboards
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2 4 1 A pplications of gesture recognition

Gesture recognition is used for variety of various applications, from sign language 

recognition (Kadous, 1995, Wu and Sutherland, 2001) to being used to control 

television on occasions when the remote control just can’t be found (Freeman and 

Weissman, 1994) It is particularly popular m immersive VR applications, where 

gloves are mapped to virtual representations of the hand, which can be used to 

manipulate objects m the world Gestures are typically used for selection and 

manipulation of objects, as well as travel These can take the form of natural 

intuitive gestures, such as pointing or grasping motions, as might be used in the 

real world (Mine, 1995), or by mapping predefined gestures or postures to desired 

actions, such as the selecting from a menu (Bowman et a l , 2001b)

Gesture recognition has also been applied to communication, where various 

attem pts have been made to recognise sign language, from finger spelling to full 

dynamic hand motions (Shamaie and Sutherland, 2003, Starner and Pentland,

1995) In contrast, Fels and Hmton (1993) mapped hand gestures to 10 control 

parameters, which allowed the hand to act as an artificial vocal tract and produce 

speech m real time Finally, text-entry in immersive environments was achieved 

by Bowman et al (2001b) and Evans et al (1999), and involved the recognition 

of key-press gestures, which were mapped to virtual keyboard keys

2 4 2 D atagloves

In order for gestures to be recognised, they must first be measured Raw data, 

corresponding to the position and orientation of the hand, must be collected to 

which algorithms can be applied and gestures recognised One method by which 

this is achieved is through instrumented gloves, or datagloves, which measure and 

relay data detailing values such as finger flexion and abduction (See Figure 2 8) 

These gloves are often augmented with 3D positional trackers which relay hand 

position and orientation data Unlike data from computer vision, which must
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Figure 2 8 Finger motions of the hand (adapted from Sturman, 1992)
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3

F igure 2 9 Bones and joints of the hand (adapted from Sturman, 1992)

be pre-processed before gesture recognition can take place, information recorded 

from dataglove and trackers can be analysed directly

A brief history One of the first gloves to be described in literature is the 

“Sayre” glove (Defanti and Sandm, 1977) The design was based on an idea by 

Rich Sayre of the University of Chicago (Sturman, 1992) Flexible tubes with a 

single light source at one end and a photocell at the other were attached to each 

of the fingers of the gloves As the fingers were bent, the amount of light reaching 

the photocell decreased evenly, this allowed for accurate measurement of finger 

flexion The glove could measure the metacarpophalangeal joints for the four 

fingers and thumb, along with the proximal mterphalangeal joints on the index 

and middle fingers, for a total of 7-DOF (LaViola, 1999)

Grimes (1983) secured a patent on a dataglove which describes a man-machine 

interface “for translating discrete hand positions into electrical signals represen­

ting alpha-numeric characters37 Grimes’s glove incorporated sensors which mea-
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sured both finger flexion and contacts at key positions as well as hand orientation 

Gesture recognition was hard-coded into Grimes’s glove, mapping various hand 

positions letters of the alphabet

The Z-Glove and Dataglove, developed by Zimmermann et al (1987), were 

considerably more versatile The gloves were made commercially available through 

VPL Technologies Flexion was measured using Zimmerman’s patented optical 

flex sensor (Zimmerman, 1985) Similar to the Sayre glove, a photocell measured 

the direct and reflected light through a flexible tube attached to the fingers Up 

to 15 of these flex sensors were attached to the glove which allowed the flexion 

at the MCP, PIP  joints to be measured, as well as the abduction of the fingers 

(See Figure 2 9 for hand joints) Tactile feedback was provided by piezoceramic 

benders, which were mounted underneath each finger This produced a tingling 

or numbing sensation m the fingertips On the Z-Glove, tracking was achieved 

with ultrasonic transducers attached to either side of the metacarpal, which allo­

wed roll and yaw to be determined when a direct line of sight was available The 

Dataglove used a 3SPACE magnetic tracking system which allowed for 6-DOF 

tracking

Initially developed as a controller for the U tah/M IT  Dexterous Hand, the 

Dexterous HandMaster (DHM) was an exoskeleton-like device worn over the fin­

gers and hand (Sturman and Zeltzer, 1994) The technology was licenced and 

sold by Exos, Inc The glove measured 20-DOF of the hand, four for each finger, 

and four for the thumb It was accurate to within 1° of flexion (Sturman, 1992)

M attel introduced a low cost glove for the Nintendo m 1989, which used 

resistive-mk flex sensors which registered the overall flexion of the thumb and 

four fingers Acoustic trackers were used to accurately locate the glove withm 

one-fourth of an inch (Sturman and Zeltzer, 1994) M attel stopped producing 

the glove after only 2 or 3 years However, the gloves low cost meant it was used 

regularly by VR researchers, who reverse-engineered it m order to connect it to 

PC serial ports
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Current input technology There are four datagloves currently available on 

the market, which vary greatly m cost and accuracy The most recent addition 

to the market is the p5 from Essential Reality (2003) Retailing at under $70, 

the glove is considerably cheaper then anything else available on the market and 

has been designed primarily for the computer gaming market Proprietary flex 

sensors measure overall finger and thumb flexion, while 6-DOF positional tracking 

is provided by 2 cameras Although no formal studies have been carried out on 

the glove, personal experience revealed a high level of hysteresis during flexion 

and extension of the fingers However, given its low cost, and freely available 

software development kit, the p5 is likely to replace M attel’s PowerGlove as a 

low cost VR input device

At the opposite end of the market is the CyberGlove Originally developed 

by Kramer for his “Talking Glove” project (Kramer and Leifer, 1989), it is sold 

commercially by Immersion Corporation (2004) (formerly Virtual Technologies) 

and is currently the glove of choice for VR research The glove is available m 

2 models, with 18 and 22 sensors respectively The 18 sensor model measures 

the flexion of the MCP and PIP  of the 4 fingers and thumb, thumb opposition, 

abduction/adduction between the fingers, radial and palmer abduction, and wrist 

flexion and abduction The 22 sensor model also measures the flexion of the DIP 

on each of the 4 fingers Evaluations of the glove by Kessler et al (1995) and 

LaViola (1999) suggest it is accurate to withm one degree of flexion Perhaps the 

only negative aspect of the glove is its price, which is m excess of $10,000

Pmch Gloves, offer an alternative approach for gesture recognition Unlike 

traditional datagloves, they do not have flex sensors, but instead have electrical 

sensors m each finger tip When two or more of these sensors come m contact a 

signal is returned indicating that contact or pinching has occurred The advan­

tage of the gloves is that contact is binary and unambiguous, greatly simplifying 

gesture recognition Gloves are sold m pairs, creating a large potential gesture 

set However, the disadvantage of the gloves is that, without flex sensors, it is
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difficult to provide accurate virtual representation of the hands Nevertheless, 

pinch gloves are well suited to situations where simple gestures are sufficient, 

and, when combined with 3D tracking devices, can be used for a variety of in­

teraction techniques (Bowman et a l , 2001b) Pmch Gloves are made available 

commercially from Fakespace Inc (2004) and retail for roughly $2000

Finally, Fifth Dimension Technologies (5DT) produce datagloves with 5 and 

16 flex sensors The 5 sensor model, often referred to simply as the 5th Glove, 

uses proprietary fiber optic based flexor technology to measure overall finger 

and thumb flexion The 16 sensor model has 2 of these sensors per finger, and 

also measures finger abduction Both models are fitted with a 2-axis tilt sensor, 

which measures 120 degrees of pitch and roll We have used the 5 sensor model 

throughout the course of our experiments Measurement of the flexion of each 

finger is achieved by altering the fiber optic cable at 2 key points per finger, 

which when bent affect the light received by the opto-electronics (See Figure 

2 10) The effect is tha t the glove can sense the overall flexion of each finger, but 

cannot differentiate between flexion points The 5 sensor model retails at $500 

while the 16 sensor model retails for $4000 (Fifth Dimension Technologies, 2004)

2 4 3 Typing m ovem ents

Interaction with a virtual keyboard involves accurate recognition of users5 finger 

motions (Figure 2 8) Of primary interest is the flexion and extension of the 

fingers and the abduction of the thumb, as users press the virtual keys of the 

keyboard This involves recognition of flexion at the MCP and PIP  joints of the 

fingers, and the trapeziometacarpal of the thumb

2 4 4 G esture and posture recognition

Throughout the text we will make a distinction between postures and gestures
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Gesture recognition Gestures, or dynamic gestures, are dynamic motions, 

which may be measured over time m 3D space Gestures may also be measured 

relative to other parts of the body Examples would be the motion we make 

when waving good-bye Gesture recognition represents the attem pt to understand 

what the user is doing, and should not mistaken for gesture interpretation, which 

attem pts to combine knowledge of what the user is doing, with context to try 

understand the users intention A waving motion for example, would have a 

different interpretation if the user was m an immersive environment standing in 

front of a dirty window, where this motion would more likely be an attem pt to 

clean the window, rather then wave good-bye to it

Posture recognition Posture, or static gesture recognition, does not measure 

hand motion over time or m 3D space Thus, postures traditionally correspond 

only to the measurement of the hand orientation and finger flexion at a particular 

moment m time (See Figure 2 8 for a description of finger movements) Examples 

of postures include the OK sign or a clenched fist (See Figure 2 11 for examples 

of postures )

The recognition of key-presses for text-entry m immersive environments can 

be classified as posture recognition, as we are only interested m the position of 

each finger, and not the position of the hand m 3D space However, we will show 

that the accurate of measurement of postures is increased if they, like dynamic 

gestures, are measured over time Thus gesture recognition needed for text-entry 

might be described most accurately as dynamic posture recognition

2 4 5 Sim ple versus com plex posture recognition

At this point a distinction should be made between what Sturman (1992) referred 

to as simple and complex posture recognition Many of the postures we commonly 

make are comprised of fully flexed or extended fingers, these can be considered 

simple postures (Figure 2 11) However, there are many postures, which involve
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Figure 2 11 Simple postures These are some of the 32 possible postures 
possible using only flexed or extended fingers Sturman noted 
that not all postures are achievable or comfortable However, 
sufficient practical postures exist to satisfy most applications

only partially flexed fingers Many examples of these gestures can be found m 

sign language Considerable research has been conducted m an attem pt to reco­

gnise such complex postures (Liang and Ouhyoung, 1996, Harlmg, 1993, Kadous,

1995) These systems typically have large posture sets, require considerable trai­

ning, and are often user dependent The recognition of key-press postures for 

virtual typing can be classified as simple posture recognition, which, in contrast 

to complex posture recognition, has only a small posture set and should ideally be 

accurate while maintaining user independence Thus, m reviewing related work, 

this thesis focuses primarily on simple posture recognition, and only mentions 

complex gesture recognition for completeness For a more comprehensive review 

of both static and dynamic gesture recognition techniques, see Watson (1993) 

and LaViola (1999)

2 4 6 R ecognition errors

Errors m recognition can generally be classified as either false positive, false 

negative, or misclassification errors False positive recognition errors occur where
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the system recognises a gesture when one was not intended by the user False 

negative recognition errors occur where the system doesn’t recognise a gesture 

when one is intended by the user Finally, misclassification errors occur when the 

system recognises the user’s attem pt to create a gesture, but misinterprets the 

user’s intention and mis-classifies the gesture as an alternative one

2 4 7 Factors affecting recognition

Sympathetic bending One of the hindrances to accurate gesture recognition 

for virtual typing is sympathetic bending, or enslavement This refers to the 

tendency of fingers to move m sympathy with others that are bent Zatsiorky 

et al (2000) define enslavement as “the involuntary force production by fingers 

not involved m a force production task” The most common example of this, is 

the propensity of the ring finger to bend when the little finger is bent Although 

the exact cause is unknown, sympathetic bending is believed to be caused by a 

combination of factors, including the mechanical coupling of tendons (See Figure 

2 12), and neural interconnections among structures controlling flexor muscles m 

the hand (Zatsiorky et a l , 2000) Unfortunately, not only does the severity of 

sympathetic bending vary greatly between users, but the fingers which bend m 

sympathy can also vary Thus, although the majority of users will have some level 

of sympathetic bending of the little and ring fingers, others might have strong 

sympathetic bending of the index finger, ring finger or both when the middle 

finger is bent This variation between users greatly hinders the creation of a user 

independent system which requires little or no training

The segmentation problem The segmentation problem refers to the problem 

of trying to distinguish at what stage a gesture has begun, and at what stage it has 

ended While forming a posture, we may inadvertently create another posture, 

which can cause the intended one to be misclassified For example, creating a fist 

posture, if the index finger is moved slightly slower then the other fingers, a point
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Figure 2 1 2  Muscles of the hand (from Sturman, 1992)

gesture might be recognised Thus, the problem becomes one of identifying which 

portions of a gesture are transitions (sections were the user is m the process of 

making a gesture), and which are the final intended postures

Glove-based problems Finally, the glove used to sense gestures can have a 

significant impact on recognition We have used the 5 sensor model throughout 

the course of our experiments As previously mentioned, measurement of the 

flexion of each finger is achieved by altering the fiber optic cable at 2 key points, 

which when bent affect the light received by the opto-electronics (See Figure 

2 10) The effect is that the glove can sense the overall flexion of each finger, 

but cannot differentiate between flexion points Because flexion is only sensed at 

two specific points per finger, natural variations in hand size can lead to reduced 

sensitivity of the glove This occurs when the user’s flexion at the MCP and PIP 

joints do not map accurately to the flexion sensitive points on the glove for one 

or more fingers As a result of these common mis-mappmgs, the glove sensitivity 

is often less then desirable, and requires significant finger flexion before the glove
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will register any movement In practice, the glove will usually map to at least 

one of the finger joints This will be visible during initial calibration as users 

bend their fingers at each joint, but that can require the user to remember which 

joint they must flex for each finger, which is far from ideal Instead, users often 

simply over-pronounce each flexion m an attem pt to ensure one of the sensors is 

flexed, which can in turn exaggerate sympathetic bending Another problem with 

the sensor technology used by the 5DT data glove, is that it cannot distinguish 

between standard finger flexion and hyper-extension Consequently, the glove 

will often indicate that a finger is flexed when m fact it is hyper-extended

2 4 8 P attern  recognition applied to gesture recognition

Pattern recognition has applications ranging from medicine, to robotics and mili­

tary systems Examples of pattern recognition systems include character recogni­

tion, fingerprint identification, minefield detection (Jean Laurent, 1997) Pattern 

recognition may be summarised as the categorisation of input data into identi­

fiable classes, via the extraction of significant features or attributes of the data, 

from a background of irrelevant details Determining what are significant featu­

res, it a non-trivial task, and will vary from case to case However, m general, 

significant features are values which should be similar for objects belonging to 

the same class, and distinct for objects m different classes

These features form a feature vector which uniquely identifies an object or 

pattern These features may then be mapped to a feature space, where objects 

from the same class cluster together It is the role of the classifier to divide this 

feature space into distinct regions which identify the boundaries of these clusters, 

and identify the class to which a feature vector belongs Typically, the classifier 

is trained on a set of feature vectors with a known classification, which it then 

uses to identify new unclassified vectors

Gesture recognition may be viewed as a problem of pattern recognition, m 

which the patterns to be classified are instances of input from glove sensors
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2 4 9 Previous work

Pioneering work in this area is usually credited to Grimes (1983) Although ge­

sture recognition was hard-coded into Grimes’s glove, many more flexible systems 

have since been explored

Template matching

Template matching is probably one of the simplest methods for posture reco­

gnition, and is well documented (Sturman, 1992, Watson, 1993, LaViola, 1999) 

Essentially, the similarity between input data and predefined templates is mea­

sured The input is then classified as the gesture or posture which it most closely 

resembles In practice, there is a similarity threshold, which the input data must 

fall withm, otherwise no gesture is classified Various techniques are used to 

define the similarity metric used to classify gestures

Early pioneers m this area, VPL’s posture recognition work used a simple 

table lookup technique to define templates (Zimmermann et a l , 1987) Each 

table entry corresponded to a posture that defined a range of valid values for each 

sensor (Figure 2 13) If the sensor values all fell withm the valid ranges defined 

in any one table entry, then the corresponding posture was recognised Each table 

entry also contained hysteresis values, which widened the posture range once it 

had been recognised This allowed users to hold the posture comfortably, and 

prevented the accidental recognition of extra postures due to small fluctuations 

m sensor readings

V PL’s technique was simple, easy to implement and flexible However, m 

practice, the sensor range m each table entry must be quite wide, up to 30% of the 

total range (Sturman, 1992) This is due to a combination of glove inaccuracies, 

and natural variances m user performance Sturman (1992) reported that with 

over 10 table entries an overlap occurred, which caused more then one gesture to 

be recognised for many postures
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Figure  2 13 VPL gesture editor A typical table entry for a gesture The 
valid sensor range is in dark grey, and the hysteresis range is m 
light grey (From Sturman, 1992)

Sturman (1992) proposed a simplified version of this technique Recognising 

tha t 90% of gestures used a combination of fully flexed or fully extended fingers, he 

suggested tha t threshold values could be hard coded into any system to recognise 

if a finger was flexed or extended By normalising the flex values between 0 0 

and 1 0, flexion was detected if the flex value exceeded 0 8, while extension was 

detected if the flex value fell below 0 2 Thus, a point gesture was recognised if 

the flex values of the little, ring, and middle fingers were above 0 8 and the index 

finger below 0 2 As can be seen from Example 2 1, fingers which were not central 

to the gesture (m this case the thumb, which could be either flexed or extended) 

c o u l d  s i m p l y  b e  i g n o r e d

/* flex[d][3 ] normalized flex value for digit d joint j */ 
if ( flex[index ] [MCP] < Q 2 &&

flex[middle][MCP] > 0 8 &&
flex[nng ] [MCP] > 0 8 &&
flex[pinkie][MCP} > 0 8 ) {

posture_recogized = POINTING
}

E xam ple 2  1  Code to recognise point (From Sturman (1992))

Evans et al (1999) proposed a further simplified version of Sturm an’s tech-
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mque m their recognition system, which was designed to recognise key-press ge­

stures (henceforth referred to as the maximum flexion technique) They had no 

lower threshold for flexion, a key-press gesture was recognised if its corresponding 

finger flexion exceeded a minimum threshold They recognised tha t sympathetic 

bending could cause multiple gestures to be recognised, m which case the finger 

with the greatest flexion was selected as the intended one Evans et al reported 

recognition accuracy of 99% with their maximum flexion technique However, 

although accurate, their technique dramatically reduces the possible gesture set 

While Sturm an’s method allows for 32 (25) possible gestures, the maximum fle­

xion technique reduces this to only a small subset of 5 gestures - individual flexion 

of each of the fingers and the thumb

An alternative similarity measurement, suggested by Kramer and Leifer (1989) 

and Newby (1993), is the Euclidean distance between the current input and each 

posture template, where the closest posture is accepted if it is within a threshold 

distance This system can have several variations Instance-based learning may 

be used, whereby the system is initially trained on a set of example gestures 

Using the if-Nearest Neighbour algorithm, the distance is measured between the 

current input and all training postures, and the K  closest postures are returned 

The current input is then classified as the posture with the majority of the K  

closest postures A less computationally intensive alternative to the if-Nearest 

Neighbour is to simply calculate the average values for each training posture and 

then measure the Euclidean distance between these and the current posture

Neural nets and hidden Markov models

Neural nets offer an alternative to standard template matching techniques, and 

are widely used for various complex posture and gesture recognition techniques 

(Pels and Hinton, 1993, Sandberg, 1997) Using a VPL dataglove and a Polhemus 

tracker for data acquisition, Fels was able to recognise 66 different hand postures, 

each of which was assigned to different words This was achieved with 5 feed­
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forward neural networks trained using back-propagation Fels reported an error 

rate of 6% Of these, 1% were misclassification, and 5% false negative errors 

As is common with neural nets, the system must be re-tramed for every user 

Sandberg (1997) reported posture recognition accuracy of 93 5% on a set of 14 

postures, attributing most errors to false positive recognition of gestures before 

they were fully formed (transition errors)

Hidden Markov models (HMM), are popular m speech recognition, and have 

been applied to gesture recognition for both vision- and glove-based systems (Li­

ang and Ouhyoung, 1996, Starner and Pentland, 1995) Like neural nets, HMMs 

must be trained on a large set of training data However, the typical reported 

accuracy is usually about 90% (LaViola, 1999) If one HMM is used to recognise 

all gestures, it must be retrained if new gestures are added However, this can 

be avoided by having a HMM for each gesture (Liang and Ouhyoung, 1996), in 

which case only a new HMM must be trained when adding a gesture

Both NNs and HMMs require extensive training, which can involve much 

trial and error, with little guarantee of good results Both techniques are suitable 

for larger complicated gesture sets, where overlapping gestures make standard 

template matching unfeasible However, the training time required, and the trial 

and error needed to find optimal designs, are unnecessary for simple posture 

recognition such as is needed for key-press recognition, where template matching 

is preferred

2 4 10 Conclusions

Gesture recognition is required to identify key-press motions created by users 

as they press virtual keys Ideally, any gesture recognition technique employed 

should be user-independent and require no training However, variations m hand 

size and dexterity lead to problems of gesture segmentation and sympathetic 

bending, which cause false positive, false negative, and misclassification errors 

In Chapter 5 we will examine the effect of these errors on the text-entry task
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We will test effectiveness of the template matching techniques reviewed m Section 

2 4 9 Finally, based on the results of these tests we will recommend a hybrid 

technique suitable for text-entry with virtual keyboards

2.5 Interaction in immersive environments 

2 5 1 Introduction

This section will review the design of interaction techniques for immersive envi­

ronments, specifically, those suitable for interaction with our virtual keyboard 

An interaction technique is the means through which a user achieves a certain 

desired task It is achieved via a user interface, which combines hardware and 

software It maps the information from the input device to an action withm the 

system, which may then be represented visually through an output device An 

interaction technique may be as simple as clicking a mouse button, or as complex 

as a series of gestures (Bowman, 1999, Kettner, 1995, Bowman et a l , 2004) 

Early research in immersive environments focussed on the capabilities of hard­

ware, with little consideration for interaction techniques However, as immersive 

environments matured the importance of effective interaction techniques has re­

ceived more recognition, and is the subject of considerable research (Hand, 1997, 

Bowman, 1999, Bowman et a l , 2004, Mine, 1996) Again hardware played a large 

part m the focus of early research Work by Bier (1987) focussed on the use of 2- 

DOF input devices such as a mouse, m 3D environments Using abstract cursors 

called skitters and jacks, Bier’s work was typical of early work which attem pted 

to perform 6-DOF tasks, controlling 3D position and orientation, by limiting the 

DOF at any one point The arrival of datagloves, and 3D trackers such as the 

VPL dataglove and Polhemus tracker, provided true integrated 6-DOF trackers, 

allowing users to simultaneously control 3D position and orientation
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2 5 2 Universal tasks

Most virtual environments require four basic universal tasks selection, manipu­

lation, travel, and system control (Bowman, 1999) This classification is not the 

only accepted taxonomy for interaction techniques Way-finding, is sometimes 

distinguished from travel (Bowman et a l , 2004) Travel can be achieved through 

the selection and manipulation of a camera which represents the user’s eye to 

the virtual environment (Hand, 1997) Similarly system control can be achieved 

through the manipulation of objects representing the environment (Hand, 1997) 

Interaction m immersive environments will often involve selection of an object, 

followed by some manipulation of tha t object However, when interacting with 

a virtual keyboard, the process of selection alone is central, as no manipulation 

will be performed We are only interested m choosing or selecting an ambiguous 

key, and do not need to perform any further action (such as translation, rotation, 

etc ) upon it Thus, the act of selection alone is the goal The remainder of this 

section will focus on selection techniques withm immersive environments

2 5 3 Isom orphism  in V R

It can be argued that one of the benefits of VR is that it affords natural inter­

action The isomorphic mapping of our hands to virtual counterparts allows us 

to interact with virtual objects as we would m real life However, this direct one 

to one mapping has drawbacks which can limit the potential of VR For exam­

ple, objects which are beyond arms length cannot be reached Non-isomorphic 

methods of interaction, although potentially reducing realism, provide the advan­

tage of greater control Thus, for example, movement can be achieved through 

the use of gestures, rather then physical walking Distant objects can be selected 

with laser pointers emanating from the finger (Mine, 1995) or by squeezing their 

2D projection (Pierce et a l , 1997) As we shall see, both techniques can co-exist, 

with isomorphic interaction augmented by seamless switching to non-isomorphic
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Figure 2 14 Taxonomy of selection (From Bowman et a l , 2004)

techniques when necessary (for example the Go-go technique (Poupyrev et a l ,

1996))

2 5 4 Taxonom y of selection

Taxonomy typically refers to the science and methodology of classifying orga­

nisms based on physical and other similarities However, the same process of 

sub-categorisation can be applied to interaction m immersive environments By 

breaking a required task into sub-categories, and these m turn into sub-sub- 

categories, we can identify the core components required to perform a task (Bow­

man et a l , 1999) A taxonomy can also be used to describe a specific instance 

of decomposition The power of such taxonomies is that a variety of interaction 

techniques can be created to complete the desired task, by varying the combi­

nations of core components used Bowman et al (1999) define a taxonomy for 

selection in immersive environments (Figure 2 14), which we shall use as the basis 

for our own taxonomy of ambiguous text entry m Chapter 6
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Rv

Figure  2 15 Go-go interaction technique (From Poupyrev et a l , 1996)

2 5 5 3D selection techniques in immersive environments

As mentioned m Section 2 5 3, although the direct 1-to-l mapping of a physi­

cal hand to a virtual representation offers the most natural method of selecting 

objects, as it closely resembles real life, various alternative techniques have been 

proposed for selection of objects m immersive environments These can generally 

be classified as either virtual hand, or pointing techniques

G o-go te ch n iq u e  One of the simplest extensions of the classic virtual hand 

technique, is the go-go technique (Poupyrev et a l , 1996) The go-go technique 

tackles the problem of selecting objects beyond the user’s reach by creating a non­

linear mapping between the user’s hand and its virtual representation Withm a 

threshold distance D  the mapping of real to virtual hand is 1-to-l However, once 

the hand moves beyond the threshold, the length of the arm rmrtuai is calculated 

according to the function rvxrtuai =  rreai + ot{rreai — D )2 (Figure 2 15) This allows 

seamless movement from the standard virtual hand, to an augmented version

P o in tin g  te ch n iq u es  A variety of pointing techniques have been suggested for 

immersive environments Laser pointer, or ray-cast mg techniques (Mine, 1995, 

Poupyrev et a l , 1998b) allow users to select objects with a ray emanating from 

their hand or index finger (Figure 2 16)

One of the problems with a standard ray casting technique, however, is that
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Figure 2 16 Selecting a distant object by pointing (From Mine, 1995)

as the distance of an object increases, small variations m the angle of the hand 

correspond to large movements at the far end of the ray Thus, selection of smal­

ler distant objects is quite difficult An alternative to standard ray-casting, is 

the use of a torch metaphor Here, the ray has a cone like shape The conic 

shape allows for a larger catchment area when selecting, which facilities selec­

tion of distant objects However, with a larger catchment area the system may 

have to disambiguate between closely positioned objects which may be selected 

simultaneously

2 5 6 2D selection in im m ersive environm ents

Interestingly, although early interaction technique research focussed on the use 

of 2D devices to control 6-DOF movement m 3D (Bier, 1987), many interaction 

techniques now perform the reverse, limiting the DOF of 6-DOF input devices to 

just 2D

It should not be surprising tha t 2D interaction techniques are used m 3D 

Users, intimately familiar with 2D desktop interaction, are comfortable using
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Figure 2.17: Head crusher technique (From Pierce et a l , 1997)

such techniques. Also, it has been noted that 3D interaction is difficult. The lag 

and resolution of sensing technology, and often the lack of stereoscopic vision to 

aid depth perception, mean that interaction in a virtual world is not as easy as 

in real life. Finally, and perhaps more importantly, there is little point in using 

6-DOF input techniques, for tasks which may require only 2-DOF.

Pierce et al (1997) describe a selection technique, which reduces the selection 

of objects to a 2D problem. Using their head crusher technique, objects are 

selected by positioning its 2D representation on the image plane between the 

thumb and forefinger (Figure 2.17). This is similar to the crosshair, method 

suggested by Mine (1995). Variations on the same theme include the lifting the 

desired object with the palm, or framing it with both hands (Pierce et a l , 1997).

2.5.7 M enu selection in imm ersive environm ents

Selection using menus is another 2D technique borrowed from the standard desktop 

metaphor. Again, the benefits include reduced DOF, and previous user experi­

ence. Menu selection is most commonly used in immersive environments for sys-

62



2 5 Interaction m immersive environments

tem control such as mode changes However, it can be used for selection where 

other techniques may not be suitable Selection of objects which may be occluded 

or hidden, or choosing an object yet to be created from a list of potentials being 

just some of the possibilities

2D menus can be represented m various ways in 3D environments The simp­

lest of these, is to overlay the menu m 2D on top of the user’s image plane, 

allowing interaction using the crosshair described by Mine (1995)

Another alternative is to create menus which float mside the immersive en­

vironment, relative to the world rather then the user A useful technique is to 

map these to a paddle or tablet, which can be held in the non-dominant hand, 

while items are selected using either pointing techniques such as ray-casting, or 

by simply touching the tablet if it is touch sensitive The benefits of this tech­

nique is that, when attached to a tablet, the menu can be easily be moved out 

of view when it is not being used The downside is that the user must carry a 

tablet, which may restrict alternative interaction techniques When not attached 

to tablets, the drawback is that 3D ray-castmg can be needed to perform what is 

essentially a 2D task, and users may have to first manoeuvre into an appropriate 

position to view or interact with it

Shaw and Green (1994) provide an alternative, simpler approach Their ring 

menu was designed in recognition of the fact that in many situations selection 

can be reduced to just 1-DOF Menu items were selected by rotating the ring 

until the desired item was m focus, and then issuing a select command (Figure 

2 18) By reducing the DOF to just 1, ignoring up to 5-DOF of the user, 1-DOF 

menus ease the task of selection, allowing the user to concentrate on the accurate 

movement of just 1-DOF (contrast this to the 6-DOF, precision control necessary 

to select objects using ray-castmg techniques)

Tulip menus (Three-Up, Labels m Palm) offer an effective technique for direct 

selection of items from a menu A simple approach to selecting objects from a 

list or menu, is to attach or assign each one to a finger Selection is then achieved
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Figure 2 18 JDCAD’s 1-DOF Ring Menu (From Hand, 1997)

F igure  2 19 Tulip menu (From Bowman and Wmgrave, 2001)

by flexing (or pinching in the case of (Bowman and Wmgrave, 2001)) the fìnger 

with the desired menu item In case of menu lists greater then 4 (the system 

was originally designed for pmch gloves, where thumbs are required to pmch each 

fìnger), a more menu item can be assigned to the little finger

2 5 8 M iscellaneous selection techniques

Gesture provides a useful, if somewhat limited technique for selection Tulip 

menus offer one atypical example of this, where pmch gestures can select menu 

items In this situation, there is a clear visual mapping between the gesture 

and the object This is not usually the case, and users must remember the

64



2 5 Interaction m immersive environments

meaning of each gesture Gesture is perhaps most powerful as a method of system 

control, where gestures are used to select commands, rather then as a technique 

for selecting objects Gestures can be used to select modes, or actions to perform 

upon objects The power of gestures is their direct 1-to-l mapping The drawback 

of gestures is that users must learn and remember gestures, as there is typically 

no visual feedback of possible gestures Also, gestures can be imsclassified, or 

misinterpreted by the system, either through badly formed gestures, or through 

accidental creation

Speech offers an attractive selection technique Like gesture, it provides a 

natural interaction with the environment and can have a direct one-to-one map­

ping However, as with gestures, the user must learn which commands can and 

cannot by understood by the system False recognition of background noise, or 

unintended utterances can also have unwanted effects

2 5 9 C onclusion

The key interaction tasks m immersive environments are selection, manipulation, 

travel and system control Interaction with a virtual keyboard can be viewed 

primarily as a selection problem Various selection techniques exist m immersive 

environments, from natural, full 6-DOF direct selection, to restricted 1-DOF 

menu selection Creating a taxonomy of selection offers a useful insight into the 

possible selection techniques

In Chapter 6 we will create a taxonomy for interaction with ambiguous key­

boards Having created our taxonomy, we will map a set of possible gestures 

possible with the 5DT data glove, to produce possible interaction techniques for 

ambiguous text-entry
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2 6 Summary

In this chapter we have reviewed the four mam areas central to the use of ambi­

guous keyboards m immersive environments keyboard layout, prediction accu­

racy, gesture recognition and interaction techniques In the following chapters we 

will examine each area m greater detail In Chapter 3, we will examine the design 

of optimised keyboards for ambiguous text-entry In Chapter 4 we will explore 

the prediction accuracy of ambiguous keyboards, m particular we will examine 

the effects of language modelling on accuracy with standard and optimised key­

boards In Chapter 5 we will tackle the problem of gesture recognition suitable 

for predictive text-entry Specifically, we will address the problem of sympathetic 

bending, and the associated recognition errors Finally, Chapter 6 will discuss the 

design of interaction techniques suitable for immersive text-entry with ambiguous 

keyboards Ultimately, any user interface must be subject to user testing, which 

can be used both for the identification of any design problems, and to compare 

and contrast potential designs Chapter 7 discusses the results of both formative 

and summative evaluations conducted

Although examined separately m the following chapters, many of these core 

issues are interlinked Chapter 4, which focuses on prediction accuracy, will be 

influenced by the accuracy of the optimised keyboards created m Chapter 3 

Interaction techniques, designed m Chapter 6, will be influenced by both the 

gesture recognition capabilities, and prediction accuracy

Finally, Chapter 8 combines the results of all 5 chapters to provide a de­

tailed methodology for predictive text-entry m immersive environments This 

methodology summarises the results of our experiments, and provides a set of re­

commendations for the use of ambiguous text-entry m immersive environments

66



Chapter 3

Optim isation of ambiguous 

keyboard layouts

3 1 Introduction

In Chapter 2, we discussed the previous research on keyboard layout optimisation 

The aim of most keyboard layout optimisation is to increase WPM Other aims 

include increased comfort and learnabihty For ambiguous keyboard layouts, 

increasing WPM is typically tackled by attem pting to reduce ambiguity, and the 

need to resolve incorrect predictions

In this chapter we will focus on the optimisation of virtual ambiguous key­

boards accessed using datagloves This will be tackled m two separate stages 

Firstly, we will examine the optimisation of dictionary-based ambiguous keyboard 

layouts This is typically performed by attem pting to minimise the number of 

words with identical key-stroke mappings We will argue that any optimisation 

of keyboard layouts should take characteristics of word frequencies into account 

and we will perform experiments to show that keyboards which are designed ac­

cordingly perform significantly better then those which are not We will contrast 

keyboards designed to minimise clashing, as suggested by Oommen et al (1991), 

with keyboards optimised using um-gram and bi-gram statistics Secondly, we
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will optimise the key-to-finger mapping of ambiguous keys based on bi-action 

data calculated from user testing We will combine this data  with bi-gram tables 

to produce keyboards optimised for expert users, and also to predict potential 

expert speed

3 2 Optimising dictionary-based ambiguous keyboards

As discussed m Chapter 2, optimisation of ambiguous keyboards is highly depen­

dent on the interaction possible with the ambiguous keyboard Although reducing 

clashing is important, it is not always the most im portant factor This is evi­

dent m (Bahuman et a l , 2000, Harbusch and Kuhn, 2003, Garbe, 2000, Kuhn 

and Garbe, 2001), where keyboard layouts were optimised for motor-impaired 

users Here users could not select each key independently, each ambiguous key 

was highlighted m rotation, with users pressing a single key to indicate tha t the 

highlighted key is the one intended Optimisation of these keyboards, therefore, 

is focussed on choosing a layout which would require as little cycling as possible, 

but also provides as few clashes as possible (as these also have to be rotated 

through)

In contrast, the ambiguous keyboard we propose for use m immersive envi­

ronments allows the user to access each ambiguous key at any point, by flexing 

the matching finger Accordingly, the optimisation of our ambiguous keyboard 

layout is focussed solely on reducing clashing, which m turn reduces the user 

intervention needed when the system predicts the incorrect word

Similar work, optimising a telephone key-pad layout for word-level disam­

biguation, is tackled by Oommen et al (1991) Optimal keyboard designs are 

achieved by attem pting to minimise the number of words with identical key se­

quence mappings For any given dictionary, each word must map to a sequence of 

key strokes W ith increased dictionary size, the potential for two or more words 

to map to the same sequence increases Oommen et al (1991) attem pt to find a
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keyboard which reduces clashing by ranking keyboards according to the number 

of individual sequences they create for a set dictionary Using a stochastic lear­

ning automata, they reduce the average number of clashes for their 1067 word 

dictionary to just 5 7

Their method may be formally described as

A is a finite alphabet and H , the finite dictionary, is a subset of the words 

over A* Let K  be a subset of the integers where, with no loss of generality, 

K  =  {1,2, ,K }  For all % e K ,  a set C% C A  is associated, where the Cx are

mutually exclusive and collectively exhaustive Here K  represents the key count, 

while Ct represents the letters allocated to a single key

Let n  =  {C7Z}, which corresponds to a keyboard layout Thus the sequence 

of keys needed to enter enter a word X, n (X ), will be the string Y, where if 

X  =  x i, £2, , € H  then Y  =  t/1 t , Vn  where yt e K  and x % 6 CVl Also

for of ease of expression we shall define H n to be the mapping of H  due to n  

Thus

H n = { I1{X) \X e H }  (3 1)

Since more than one X  e H  may map to the same encoding string, the 

cardinalities of both H  and i i n need not be the same, such that | # n | < \H[ 

Thus the ambiguity of any keyboard layout, A, is

A =  \H\ -  \HU\ (3 2)

Oommen et al suggest that an optimal keyboard design is one which mini­

mises this ambiguity A for a given dictionary H  However, by rating the fitness 

of a given keyboard according to this ambiguity value, the optimisation method 

employed fails to consider the frequency with which words m their dictionary 

occur m natural use, and thus underestimates the probability of clashing when 

the keyboards are used m practicc
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3 2 1 Word frequency characteristics and keyboard layout eva­

luation

The use of ambiguous keyboards for text-entry necessitates a method for disam­

biguating words when a collision occurs This is usually performed by a disambi­

guation engine, with the user ultimately completing the disambiguation process 

The method we shall focus on, and that is currently employed on most mobile 

phones, is as follows if clashing occurs, the words are ranked according to fre­

quency, with the most frequent offered first The user rotates through alternatives 

if the first word offered is not their desired word

For this method of interaction, keyboards designed using Oommen’s technique 

are sub-optimal For example, consider the dictionary of the most common 1000 

words in the Brown Corpus If, as suggested by Oommen et a l , keyboards are 

ranked according to how many individual sequences they have, a keyboard with 

998 individual sequences would be ranked near optimal W ith only 4 words from 

1000 clashing, one might assume that a user employing such a keyboard would 

be faced with ambiguous words with a probability of only 0 004 If however the

4 words that clashed happened to be the pairs {the, and} and {of, to}, the most 

common four words m the dictionary, whose combined frequencies represent over 

20% of our 1000 word dictionary, then the user would m fact be presented with 

ambiguous words with a probability of 0 2, or once m every five words Although 

this example is clearly a worst-case scenario, it highlights the dangers of ignoring 

word frequency when considering alternative keyboard layouts

We argue that by simply ranking keyboard layouts according to the number 

of individual sequences it has for a given dictionary, the characteristics of the 

dictionary are ignored, ultimately leading to the creation of inferior keyboards 

This is due to the nature of word frequency and the phenomenon known as 

Zipf’s law (Zipf, 1935) Zipf’s law is a well-established empirical generalisation 

about word frequency which says that frequency is inversely proportional to rank
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Plotting frequency against rank results in a doubly exponential curve (Gazdar,

1996) We further contend that a method of ranking keyboards which takes word 

frequency into account should lead to the creation of superior keyboard layouts

3 2 2 Evaluation using word frequency

We suggest that when evaluating keyboard layouts, both the frequency of words 

m the dictionary being used and the disambiguation process should be considered 

when attem pting to create an optimal keyboard

Consider the previously described disambiguation algorithm, where clashing 

words are ranked according to their frequency In this scenario the user need 

only intervene if the word offered is incorrect Consider to clashing words X \  and 

X 2 , with probability p ( X  1) and p ( X 2 ) respectively, where p(-Xi) > p ( ^ )  The 

disambiguation algorithm is statistically likely to  offer the correct word with a 

probability of p ( X  1) and the incorrect word with a probability of p ( ^ )  Therefore 

the predicted accuracy of any given keyboard layout is the sum of the probabilities 

of unambiguous words, combined with the sum of the probabilities of the most 

frequent word m each of the clashing sets We can describe the technique for 

calculating this predicted accuracy more formally as

p i f  —> [0,1] where p{X)  =  relative probability of X  occurring in natural 

language

For each word Xo we can determine the clash count <J(J£o) as

6(X0) =  \ {X  |n p O  -  Ti(Xo)>X,Xo e H , X ^  X 0}\

Let Q be the set of all clashing words, such that Q =  { X  \ 6(X)  > 0, X  e if} , 

and G be the set of their corresponding sequences Thus G — {II(X) | X  G Q} 

where G = {Yi, Y2, , Yd} and d = \G\

Then let Qx define the set of words tha t map to a specific sequence Y% for 

z = l d

71



3 2 Optimising dictionary-based ambiguous keyboards

Qt = {X  | U (X ) = Yz, X e  Q, Y% €  G}

Thus the predicted accuracy P  of any given keyboard may be calculated as 

the sum of the probabilities of unambiguous words (with a clash count of zero, 

thus £(X) =  0), plus the sum of the probabilités of the words m each clashing 

group Qz with the highest probabilités

d

p = E + E
x eH  i=i

(X)  =

where (3 3)

1 i f  5(X)  =  0 

0 otherwise

As an example consider a small dictionary of words and their relative proba­

bilities, {the (0 3), of (0 15), and (0 15), to (0 1), a (0 1), in (0 1), is (0 1)} For 

a given keyboard, our dictionary might map to the following sequences {324, 

12, 324f 31, 3, 12, 12} respectively In this case the words the, o f and, m, and 

is are all words which clash, and are thus part of Q The set G would consist 

of {324 , 12} W ith Q\ =  {the, and} and Q 2 = {of,  m , is}  The predicted 

accuracy of the keyboard for this dictionary would then be calculated as follows 

the sum of the probabilities of words which don’t clash {to, a), plus the sum of 

the word with the highest probability m Qt (the), and that m Q 2 (of),  which 

gives us 0 65 This means that, during the course of typing, the first word offered 

by our disambiguation system is likely to be correct 65% of the time

We contend that using this alternative method for rating keyboards, we can 

rate a keyboard’s performance with higher accuracy and thus create significantly
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better keyboards1

3 2 3 Bi-gram  prediction and word co-occurrence

As discussed m Chapter 2, language modelling may be used to aid the predic­

tion of ambiguous words based on their probability in a large corpus We will 

examine the benefits of higher-order language models m greater detail m Chapter 

4, however, their use m the design m optimal keyboards would seem a natural 

progression from word frequency Word frequencies only indicate the likelihood of 

a word occurring m our text, whereas bi-gram probabilities tell us the probability 

of a word occurring given a previous word Thus, given a clash, a frequently seen 

word may be ranked lower then a less frequent one if the less frequent word is 

more likely to appear after the previous word If two words with high frequency 

clash, then ranking a keyboard with Equation 3 3, may be inaccurate, as a bi­

gram language model may predict the correct word with higher accuracy then 

suggested by Equation 3 3 This is because the co-occurrence of the words might 

be low The two words might rarely be seen after similar words, and are thus 

unlikely to be confused by a bi-gram prediction system Confusion probability Pc 

is used to describe the estimate of the probability that wiand i^m ay  be found 

in the same context (Dagan et a l , 1999), and can be calculated as follows

P M  \w1) = J2 P-[W11 W2)PP{™'1 \ W2)P{W2)
w2 \w )̂

Applying this concept to our evaluation technique, a more accurate method 

of predicting keyboard performance, is to consider how likely two words are to 

occur m the same sentence, and from this calculate how likely the language model 

is to predict incorrectly If we consider the bi-gram pairs “go home” and “be 

good”, where the words good and home clash for an alphabetic keyboard, with

1This technique was also suggested independently by Cardinal and Langerman (2004) Ho­
wever, the benefit of using such a technique over alternatives was not examined
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example probabilities of each shown m Example 3 1, a bi-gram language model 

will predict the correct word for both our pairs However, should the bi-gram “be 

home”, or ‘go good” by typed by a user, the bi-gram language model will predict 

the wrong word This is likely to occur with a probability of P(good | go)-P(go), 

and P(home | be)P(be) respectively

Pigo) = 0 1  
P(be) = 0 2  
P(home | go) = 0 2  
P(home | be) = 0 1  
P(good j go) = 0 01 
P{good | be) = 0 2

Exam ple 3 1 Sample bi-gram probabilies

Therefore, a more accurate estimate of the cost of a pair clashing can be found 

by summing the probabilities of all instances where the language model would 

predict the wrong word For any clashing pair, the probability that the

language model will predict incorrectly is

Pw{wi, w[) = ^ 2  mmfPftU! I w2)P{w 2 ),P (w [ \ w2)P(w 2)) (3 4)
VJ2

This equation allows us to create a confusion matrix, which, for each word 

pair, contains the probability our language model will predict incorrectly should 

they clash If we define A  as the set of all pairs of words m Qu A  = {(X, Y ) \ 

X  € Q%,Y e Qi}, then, for any given keyboard layout, we can predict the likely 

performance as follows

P = 1 ~ 2 E E P^ Y) (35)
{AeQi}

3 2 4 O ptim ised keyboard layout creation

Once an evaluation metric has been decided, the optimisation of a keyboard be­

comes a NP-complete search problem (Oommen et a l , 1991) Various search

heuristic algorithms have been employed to search for optimised keyboard lay­
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outs simulated annealing, n-opt, genetic, and metropolis algorithms to name a 

few (Zhai et a l , 2000, Light and Anderson, 1993, Lesher and Moulton, 2000) Du­

ring the course of our experiments we used simulated annealing Van Laarhoven 

and Aarts (1987) to create optimal keyboards However, any of the previously 

mentioned optimisation techniques would likely have sufficed N-opt, as described 

m (Lesher and Moulton, 2000), was also tested giving near identical results

We also explored the use of a slightly adapted version of simulated annealing 

for our search algorithm, which could be called guided simulated annealing W ith 

standard simulated annealing, the keys to be switched are typically chosen at 

random Our adapted technique attem pted to guide the system by choosing the 

key which was causing the most ambiguity, and switching it with a random key 

This was inspired by Oommen et al (1991), who used a similar, but slightly more 

elaborate system

For the sequence-based system, the adapted version guides the selection of 

the letter to be changed, by choosing the letter which has the most clashes For 

the sequence based evaluation metric, for every set of clashing words, the letters 

which caused the clash are penalised A running count is kept of the clashes each 

letter causes Thus, for every pair of clashing words, 1 is added to the clash count 

of any letter which do not match For example, if two words, cake and late clash, 

the letters c and I clash, as do the letters k and i, thus each of these would be 

punished The letters a and e remain unpunished The letter which has been 

penalised the most, and thus causes the most clashes m the dictionary is chosen 

as the letter which should be changed

For the statistical evaluation metric, for each clashing pair, the clashing letters 

m the word with the lowest probability are penalised according to that probabi­

lity Thus, if cake and late clash, and each have a probability of 0 08 and 0 02 

respectively, then only the letters I and t are penalised, with 0 02 each Again, 

the letter which has been penalised the most is chosen as the letter which should 

be changed In this case, this will not necessarily be the letter which causes the
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most clashes, but rather it is the letter among less likely clashing words which is 

statistically most likely to clash

Our adapted or guided simulated annealing technique was out-performed by 

standard simulated annealing for both statistically based and sequence based 

keyboards It is likely the large early gams m performance made by the guided 

technique caused the search get stuck m a local minimum, In contrast, the 

standard technique although making slower initial progress, performed better in 

the long run Given the performance of the guided statistical and sequence based 

techniques, a guided technique was not attem pted for the co-occurrence method

3 2 5 Experim ent

Having defined three separate metrics with which to estimate the potential ac­

curacy of keyboard layouts, we conducted an empirical evaluation of each metric 

to examine the performance of resulting keyboards during actual use This was 

achieved by creating separate keyboard layouts using each of the three estimation 

metrics to predict performance, and then testing the actual performance of resul­

ting layouts on a large text corpus We used the simulated annealing algorithm 

to create 90 optimised keyboard layouts, with each of the evaluation metrics used 

to estimate the performance of 30 keyboards

The algorithms used to implement Equation 3 1,3 3 and 3 5, can be seen in 

Algorithm 3 2 , 3  3 and 3 4 respectively

{ Algorithm to calculate the sequence count for a keyboard layout } 
BEGIN
calculate key-sequence for each word m  dictionary 
sort dictionary by key-sequence 
FOR all words m  dictionary

IF{ dictionary[i] sequence '= dictionary[i—1] sequence ) 
sequence_counts++

END IF 
ENDFOR 

END

Algorithm  3 2 Sequence count algorithm
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{ Algorithm to estimate the accuracy of a keyboard layout based on word frequency} 
BEGIN
calculate key-sequence for each word m  dictionary 
sort dictionary by key-sequence and then frequency 
FOR each word 1 m  dictionary

IF( dictionary[i] sequence = dictionary[i-I] sequence } 
probability_of_clash += dictionary[1 ] frequency 

END IF 
ENDFOR 

END

A lgorithm  3 3 Statistical probability algorithm

{ Algorithm to estimate keyboard accuracy based on word co-occurrence } 
BEGIN
calculate key-sequence for each word in dictionary 
sort dictionary by key-sequence and then frequency 
FOR each word i m  dictionary 

next = 1
WHILE (dictionary[i] sequence = dictionary[l+next])

prob_of_clash += confusion_prob[dictionary[i ]][dictionary[l+next]] 
next++

ENDWHILE
ENDFOR
END

Algorithm  3 4 Co-occurrence probability algorithm

Procedure For our experiments we used the British National Corpus (BNC), 

a “100 million word collection of samples of written and spoken language from 

a wide range of sources, designed to represent a wide cross-section of current 

British English, both spoken and written” (BNC, 1995) A two million word 

training section of the BNC corpus was selected at random From this, um- 

gram and bi-gram statistics were calculated using the SRILM toolkit (Stanford 

Research Institute, 1995) A dictionary of the most frequent two thousand words 

m the corpus was then created We used simulated annealing to create three 

sets of optimal keyboards with 30 keyboards m each Each set used a different 

equation to estimate keyboard ambiguity The first set, which we shall refer to as 

the sequence set, was created using Equation (3 2) to minimise ambiguity The 

second set, which we shall refer to as the frequency set, was created by considering 

word frequency as described m Equation (3 3) Finally the third co-occurrence
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set, was created by using Equation (3 5) to estimate keyboard performance 

Having created three sets of keyboards using each of our estimation metrics, 

we then simulated user input, to evaluate the actual accuracy of the keyboards 

when used m practice Using an engine to simulate use of the keyboard by a 

user, we tested each keyboard on a one million word test corpus, taken from a 

separate section of the BNC Tests were conducted using bi-gram word prediction, 

as described in Equation 2 1

Hypothesis The mam hypothesis of the experiments were

• The use of word frequency information during keyboard creation would 

result m keyboards which significantly outperformed those designed to mi­

nimise the clash count

• The use of co-occurrence information would result m yet further improve­

ments in prediction performance

3 2 6 R esults

The results m Figure 3 1 show the performance of the keyboards, when used 

to type a 1 million word test corpus Values on the vertical axis refer to the 

percentage of words offered correctly first time A 1-way ANOVA test confirms 

tha t there is a significant difference between the keyboard estimation techniques 

(F(2 87) =  30 871, p < 0 0005) Comparing individual techniques, we found that 

the frequency-based set was significantly better then the sequence-based set (t 

— 5 352, df =  87, p < 0 0005, one-tailed) This confirmed the hypothesis We 

also found tha t the co-occurrence set performed significantly better then the 

frequency-based set (t =  2 307, df =  87, p =  0 0165, one-tailed) Again this 

confirmed the hypothesis

The outliers visible m the sequence-based set highlight the problem whereby, 

due to word frequency characteristics, a keyboard with a low sequence count will

78



3.2. Optimising dictionary-based ambiguous keyboards

98.4

B 97.6 
<

97.4

97.2 ______ ,________ .________ „______
N = 30 30 30

co-occurrence frequency sequence

Evaluation metric used during creation

Figure 3.1: Box-plot of keyboard performances, 

perform poorly in practice if the words which do clash occur with high frequency.

3.2.7 Conclusions

We have compared three evaluation methods for the creation of optimal key­

boards designed for word-based disambiguation. We have argued that any me­

thod of evaluating keyboards based on a dictionary of words should take language 

characteristics into account. Through empirical testing we have shown that crea­

ting keyboards based on word frequency statistics offers significant improvements 

over sequence maximising techniques. We have also shown that further signifi­

cant improvements can be made through the use of co-occurrence data collected 

from bi-gram probabilities.
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3 3 Optim ising keyboard layouts based on bi-gram /  

bi-action tables

One of the design criteria for the Dvorak keyboard was to increase frequency 

of alternate-hand key-strikes Kmkead (1975) showed that alternate-hand bi- 

actions were fastest, followed by same-hand bi-actions, and finally same-finger 

bi-actions This is because when striking a key with one hand, the other hand 

can move into position and strike almost simultaneously In contrast, the slowest 

motion, same-finger bi-actions, has no simultaneous motion This can be seen 

m Figure 2 4, where keystroke times for a QWERTY keyboard are shown (From 

Kmkead, 1975)

Hughes et al (2002) suggest the use of bi-action tables to create optimised lay­

outs for a PDA and stylus, and predict expert burst speed for any given keyboard 

layout Using a similar technique to Hughes et al (2002), we will create bi-action 

tables for all 100 possible finger combinations, and, using this data, predict ex­

pert speed for our system for various keyboard layouts We will also attem pt to 

further optimise our ambiguous keyboard by mapping the fastest bi-actions to 

the most common bi-grams, by changing the keyboard layout, but keeping the 

letter to key mappings

3 3 1 Creating a bi-action table for our ambiguous virtual key­

board

Unlike the bi-action tables of Hughes et al (2002) and Kmkead (1975), our pro­

posed bi-action table will not contain an entry for every letter As our keyboard 

is ambiguous, our bi- act ion table will only contain 10 x 10 entries one for each 

finger combination

Bi-action times of 5 participants wearing 5DT datagloves were measured 

The gloves were calibrated for each user before experiment This involved mea­

suring the range of movement of each individual finger, and scaling the flexion
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F igure 3.2: Bi-action experiment

readings returned by the dataglove accordingly. Participants were shown two 

virtual hands. The numbers 1 and 2 appeared above the fingers to be timed, in­

dicating the desired bi-action order. When users flexed the first finger, the colour 

of the number 1 turned from red to green. Timing of the bi-act ion began when 

the first finger was flexed, and ended when the second finger was flexed. At this 

point the number 2 briefly changed from red to green. A new bi-action pairing 

was then shown. If the user flexed the wrong finger for the first of the bi-action 

pair, it was simply ignored by the system and the number 1 remained red. If the 

user flexed the wrong finger for the second of the bi-action pair, the system reset 

the timer, and reset the colour of the number 1 to red.

Participants were instructed to first make note of both fingers in the requi­

red pair before attem pting the bi-action, rather then flexing the first and then 

visually scanning for the second. It was explained that only the timing between 

the flexion of the first and second fingers was timed. Occasionally the second 

finger flexion of the bi-action pair was too weak, which resulted in no recognition 

from the system. Participants initial instinct was to flex the finger again with 

more exaggerated flexion, this resulted in a false bi-action time, as it represented 

the time to complete the bi-action, plus the time to realise the system hadn’t 

recognised the second flexion, and flex the second finger again. Participants were 

told to reset the timing by making an incorrect gesture should such an error oc-
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L>l%ttle Lnng m̂iddle Lindex Lthumb ^ m i d d l e ■ ft-r in g R-lx t t t e

l̂ittle 0  2 3 4 0  2 4 1 0  2 4 7 0  1 9 0 0  2 2 0 0  1 7 0 0  1 4 7 0  1 8 4 0  2 3 0 0  1 5 7

Lrmg 0  2 1 0 0  2 3 7 0  1 9 0 0  2 4 1 0  2 2 4 0  1 9 0 0  1 6 3 0  1 5 7 0  1 8 4 0  1 7 7

Lmiddle 0  2 6 7 0  1 9 0 0  2 4 1 0  2 2 4 0  2 2 1 0  2 1 0 0  1 4 4 0  1 2 7 0  2 0 0 0  1 6 0

‘̂inde.x 0  2 2 0 0  2 0 4 0  1 7 7 0  3 1 0 0  2 2 1 0  2 1 1 0  1 1 3 0  1 6 0 0  1 7 7 0  1 6 0

Lthurnb 0  2 4 7 0  2 1 0 0  2 6 1 0  1 7 7 0  2 8 4 0  1 6 0 0  1 7 7 0  1 9 0 0  1 9 4 0  2 0 4

&thumb 0  1 9 7 0  1 5 7 0  1 4 7 0  1 5 4 0  1 2 7 0  2 0 3 0  1 8 7 0  2 0 4 0  2 1 4 0  1 9 4

R-zndex 0  1 9 0 0  1 1 3 0  1 5 7 0  1 5 3 0  1 3 1 0  2 1 7 0  1 9 7 0  1 7 0 0  2 2 7 0  1 9 3

m̂iddle 0  1 7 0 0  1 7 4 0  1 5 4 0  1 9 1 0  1 1 3 0  2 1 7 0  1 6 0 0  2 0 4 0  2 5 7 0  1 7 0

faring 0  1 9 0 0  1 0 7 0  1 2 4 0  1 4 0 0  0 9 7 0  2 2 0 0  2 1 0 0  2 0 0 0  2 8 7 0  1 9 0

R-httl e 0  1 3 4 0  1 4 1 0  1 8 4 0  1 7 7 0  1 8 0 0  2 7 1 0  1 8 4 0  2 2 4 0  1 8 4 0  2 1 7

Table 3 1 Average bi-action values

cur, and repeat the correct bi-action from the beginning Nevertheless, despite 

this instruction, users still occasionally repeated the unrecognised gesture instinc­

tively before they realised their mistake Users were presented with all possible 

100 bi-actions m random order They repeated the test 3 times Finally, the 

minimum bi-action times for each user was recorded The minimum time was 

chosen taken m favour of the average time m order to minimise the impact of the 

previously noted errors These minimum times were then averaged across all 5 

participants to  create our final bi-action table (Figure 3 1) The bi-action times 

recorded have similar characteristics as those recorded by Kmkead (1975) Ho­

wever, due to  the larger movements needed for key-press gestures, the times are 

slower In particular alternate-hand bi-actions are faster then same-hand, which 

are m turn  faster then same-finger bi-actions (Figure 3 2)

3 3 2 Rearranging optim ised ambiguous keyboards based on bi- 

action tables

Having created bi-action tables for all possible finger combinations, we can predict 

the expert typing speed for any keyboard layout through the use of letter bi­

gram frequencies of the English language We can also rearrange the keys on the 

optimised ambiguous keyboard we created using Equation 3 3, to maximise the
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^ l i t t l e L > r m g ^ m i d d l e l ' i n d e x ^ th u r n i

a l t e r n a t o  h a n d 0 176 0 138 0 153 0 163 0 130

s a m e  h a n d 0 236 0 216 0 223 0 228 0 234

s a m e  f in g e r 0 234 0 237 0 241 0 310 0 284

H - t h u m b ^ n d e i f t m i d d l e ^ r : n j R h t t l e A v e r a g e K in k e a d

a l t e r n a t e  h a n d 0 188 0 149 0 164 0 197 0 172 0  1 6 3 0  1 3 2

s a m e  h a n d 0 226 0 188 0 200 0 234 0 193 0  2 1 8 0  1 6 8

s a m o  f in g e r 0 203 0 197 0 204 0 287 0 217 0  2 4 1 0  2 3 0

Table 3 2 Inter-hand and finger bi-action times

potential expert speed

Given a character map K , a table of bi-gram possibilities P , and an empirical 

bi-action table A, peak expert text-entry rate R (K , P, E), in characters per second 

(CPS), is given by (from Hughes et al (2002))

R (K ,P ,E )  = (3 6)

Given the predicted CPS, the predicted words per minute (WPM) is calcu­

lated by multiplying by 60 seconds per minute and dividing by 5 characters per 

word (MacKenzie et a l , 1999), thus

W P M  =
C P S  x 60

We used the bi-gram frequency table of (Soukoreff and MacKenzie, 1995), 

Table 3 3, for consistency as this table is commonly used for text-entry rate pre­

dictions, and is one of the tables used by Hughes et al (2002) Using Equation 3 6, 

we calculated the predicted expert speed for QWERTY, alphabetic, DVORAK, 

and minimum ambiguity keyboard layouts (Table 3 4) We then used the n-opt 

algorithm to search for an optimised keyboard layout, O p tiB e s t(Figure 3 3), which 

attem pted to maximise predicted expert speed, while maintaining the minimum 

ambiguity characteristics imparted from Equation 3 3 Also shown m Table 3 4
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(D)f i ) f A i H ] (c] (B)f i ]
H u F Q L K J P

0 M T Y N W R
X V 7

Opti Orig

f s ] (E) f i ) f ? f 5 ! c 1 G)(B)
u J F Q H L P K

w M T 0 Y R N
V X , 7

O p t'Best

Figure 3 3 Opimised keyboards OpUorig(top), before bi-action optimisa­
tion, and O p t i B e s t  (bottom) after bi-action optimisation

are the times of the original optimised keyboard layout, O ptiong , as created by 

Equation 3 3, with no knowledge of bi-action speeds, and a worst case keyboard 

layout, O p t i w o r s t ,  where the optimal keyboard is arranged to produce the lo­

west possible WPM The table shows that over 5 WPM can potentially be lost 

m expert speed when creating a minimum ambiguity keyboard if no attention 

is paid to the finger mappings The predicted expert typing speed of 65 WPM 

is roughly half that of expert typists on regular keyboards (135 WPM) (Card 

et a l , 1983) This is most likely due to the larger hand movements necessary for 

accurate gesture recognition with the 5DT datagloves

3 3 3 D iscussion

As the keyboard layout is ambiguous, with several letters assigned to each key, 

many bi-gram combinations will have the same bi-act ion times, leading to less 

variation between keyboards Nevertheless, our bi-action table gives a good indi­

cation of potential expert speed given sufficient practice These times represent 

potential peak expert speed, which are likely to be slightly unrealistic Unlike
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Table 3 3 Bi-gram frequency table (from (Soukoreff and MacKenzie, 1995))

Keyboard CPS WPM

O p t l ß e s t 5 490 65 876
QWERTY 5 401 64 810
DVORAK 5 319 63 828
Alphabetic 5 266 63 188

OptlOrig 5 401 61868
O p t i  Worst 5 044 60 533

Table 3 4 Predicted expert typing speed
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3 4 Conclusions and recommendations

typing on a regular keyboard, virtual typing requires more pronounced deliberate 

movements m order for the typing gestures to be recognised (this will be discussed 

in greater detail m Chapter 5) This results m higher exertion and thus fatigue 

with prolonged use Of all users tested, the fastest, with a potential peak expert 

speed of 111 WPM, expressed a belief that they would be unable to sustain such 

typing speeds for very long

3.4 Conclusions and recommendations

W ith its strong bias to index fingers, the QWERTY keyboard layout is not well 

suited to ambiguous text-entry Furthermore, experiments by Bowman et al 

(2001a) indicate that touch-typing skills do not transfer well to immersive virtual 

keyboards Thus, optimised keyboards designed to reduce ambiguity offer an 

attractive alternative to the QWERTY keyboard layout

In this chapter we have suggested two alternative techniques for producing op­

timised keyboards The first technique used word frequency to predict keyboard 

performance The second technique used word co-occurrence data based on bi­

gram frequencies to predict likely performance Through empirical tests, we have 

shown that keyboards designed with both techniques perform significantly better 

then keyboards designed to simply maximise the individual sequence count The 

second technique, based on word co-occurrence, proved the most accurate for 

keyboard design

Through the use of bi-action tables, we have arranged the placement of these 

keys to optimise expert WPM These tables were also used to predict expert user 

typing speed, which indicated burst speeds of over 60 WPM could be achieved 

with sufficient practice

In practice, optimised keyboard layouts offer one solution for improved text- 

entry They are only one piece m the jigsaw The use of language modelling to 

predict words, and the interaction techniques used to select them will also play
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3 4 Conclusions and recommendations

a significant part in the relative benefits of any keyboard layout Thus, m the 

following chapters we will examine the benefits of optimised keyboard layouts 

when used m conjunction with improved language modelling, with various word 

selection techniques We will also examine the effectiveness of seemingly foreign, 

optimised keyboard layouts when compared to the more familiar QWERTY and 

alphabetic keyboard layouts
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Chapter 4

Prediction accuracy

4 1 Introduction

In Section 2 2 6, we discussed the prediction techniques possible when using am­

biguous keyboards These include statistical, syntactical, and context sensitive 

techniques Each of these leverage previous knowledge to predict future words 

However, in Section 2 2 7, we also discussed factors which affect the potential ac­

curacy of any prediction system These include the ambiguous keyboard layout 

employed, and the interaction techniques possible with any list of predicted or 

complete words offered to the user

In this chapter we will consider the effects of language modelling on word 

prediction and completion accuracy We will explore the effects of increased 

language model tra in in g  size and order C oupled with this, we examine the 

effects of keyboard layout and interaction style We will contrast QWERTY, 

alphabetic and optimised keyboard layouts, and examine the impact of iterative 

and direct selection techniques

Section 4 2 2 will examine word prediction accuracy, contrasting the clash- 

count of keyboards, the prediction accuracy as language model training size and 

order increases, and effects of prediction list length and selection style Section 

4 2 3 will examine word completion accuracy We will examine the accuracy
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4 2 Experiments

as language model training size and order increases, and contrast the potential 

savings possible with alternative list lengths and selection styles

Finally, we will make recommendations based on our findings, which will aid 

designers m the selection of potential keyboard layouts, language models, interac­

tion techniques and word lists lengths for both word prediction and completion

4 2 E xperim en ts  

4 2 1 D esign and im plem entation

We undertook to explore the effects of keyboard layout, dictionary size, and N- 

gram order and training size on the effect of word prediction accuracy We also 

examined the effects of these on word completion accuracy A word prediction 

system was designed that uses a language model to rank predicted words The 

word prediction system consists of two mam sections, firstly, a dictionary lookup, 

which identifies matching words, and secondly a language model lookup, which 

orders potential words according to their probability m the language model The 

language model was trained on the BNC (1995) m training sizes ranging from 

500,000 words, to 25 million To predict likely real-world accuracy, a text-entry 

engine was then built which examines the accuracy of the prediction system when 

used to predict an unseen test corpus of 250,000 words Each keyboard layout 

was tested with increasing language model training size and order (um, bi and 

tri-g ram )

D ic tio n a ry  lookup  The dictionary lookup is implemented with a tree struc­

ture Each node on the tree contains one child for each key on the ambiguous 

keyboard and a list of words Words were assigned to a particular node on the tree 

structure by converting them to their corresponding key-sequence, traversing the 

tree according to that sequence, and inserting the word on the final node Thus 

for example, the word and, which corresponds to the sequence 152 on an alpha-
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4 2 Experiments

Figure 4 1 Dictionary tree

bet i c  keyboard, would be stored by choosing the first child of the root, followed 

by the fifth and second children respectively (see Figure 4 1) Thus, the word cod, 

which has the same key-sequence, would be assigned to the same node When a 

dictionary lookup is performed all matching words m the dictionary are returned 

by simply traversing the tree according to the key-sequence entered Once a list 

of possible words is found, it is sorted using our language model

Language M odel lookup We use language modelling to order the candidate 

words offered Um-gram, bi-gram and tri-gram language models are tested We 

use Good-Turing discounting, combined with non-lmear backoff for unseen higher 

order A^-grams (Katz, 1987) The SRILM toolkit (Stanford Research Institute, 

1995) is used to create various ARPA-standard format files (Example 4 2) con­

taining language model statistics based on our training texts These files contain 

the probability of all 7V-grams seen m our training texts, as well as the backoff 

values of lower order TV-grams Using these values the probability of a word is 

calculated using Equation 2 1 (Page 26) The procedure for calculating word 

probability is listed m Algorithm 4 1
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{ Calculating the probability word n (wdn) given wdn-1 and wdn-2 }
{ <UNK> refers to the probability of an unknown word }
{ Algorithm adapted from CMU Toolkit ARPA file discription }
{ bo_wt_*() = backoff weight }

p(wdn|wdn-2,wdn-1)= if(trigram exists) p_3(wdn-2 wdn-1,wdn)
else if(bigram wdn-2,wdn-1 exists) bo_wt_2(wn-2 wn-1)*p(wdn|wdn-1) 
else p(wdn|wdn-1)

p(wdn-1|wdn-2) = if(bigram exists) p_2(wdn-2,wdn-1)
else bo_wt_l(wdn-2)*p_l(wdn-1)

p(wdn-2) = if{unigram exists) p_l(wdn-2)
else p_l(<UNK>)

A lgorithm 4 1 Calculating word probability

Each iV-gram is stored with its probability and backoff weight m a hash table 

Given a list of ambiguous words, and previous N -1 words, the probability of each 

word is calculated using Algorithm 4 1 The list of ambiguous words is then 

ranked and offered in order according to their probability

For word completion, the process is similar while typing is m progress, the 

predicted word is returned by traversing the dictionary tree based on the current 

key-sequence However, for word completion, the list of possible complete words 

corresponds to all words below the current node This list is returned and sorted 

m the same manner as predicted words Complete words are offered after a depth 

of 2 nodes has been reached when typing

T e x t-e n try  eng ine  The performance of word prediction and the associated 

language model is tested on unseen text using a text-entry engine which simulates 

user text-entry Given a keyboard layout, and test text, the engine coverts each 

word into its corresponding key-sequence This is passed to the prediction system, 

which returns an ordered list of potential words The list is then checked to see 

if it contains the intended word Using this system, the likely accuracy of any 

language model, or keyboard layout, m practice can be quickly evaluated

When testing word completion accuracy the system offers one key at a time 

to the prediction system, and accepts correct complete words as soon as they are
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\data\
ngram 1=29802 
ngram 2=246824 
ngram 3=36592

\1-grams
-5 7253 <UNK> 0 0000 
-5 4243 abc -0 1159

-5 7253 abdomen -0 1214 
-5 0263 abducted -0 1174

-4 9472 zurich -0 2679 

\2-grams
-3 3549 a a 0 0000
-3 6051 a about 0 0051
-3 7533 a academic 0 0000
-4 6486 a acquisition 0 0000

-1 3573 zurich upbringing 0 0000 

\3-grams
-2 0099 a <comma> but 
-1 2775 a <period> no 
-0 7 034 a about the 
-0 7034 a basic law

-0 4024 zoology of the 

\end\

E x am p le  4 2 Example of the APRA file format All probabilités and back-off 
weights are given m loglO form

offered As a consequence, word completion statistics represent optimal potential 

performance This may not necessarily reflect actual use, where users may not 

initially notice a correct complete word has been offered, or may choose to ignore 

it
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4 2 2 Word prediction accuracy 

Clash count

One of the central factors affecting word prediction accuracy is the keyboard 

layout For any set dictionary, the assignment of letters to keys on an ambiguous 

keyboard will cause variations m the number of words which map to the same 

sequence of key-presses As the size of the dictionary increases, so does the clash 

count Figure 4 2 shows the effect of layout on the percentage of words clashing 

for our 3 keyboard layouts with increasing dictionary size As the size of the 

dictionary increases, the strong bias for index fingers on the QWERTY keyboard 

causes it to have the highest clash count An im portant value m the design of 

any ambiguous system is the maximum sequence count This value refers to the 

maximum number of words which map to any one sequence of key-presses and 

represents the maximum number of words the user may need to iterate through 

in order to select their desired word Figure 4 3 shows the increase in maximum 

sequence count as dictionary size increases Here we can see that QWERTY has 

a significantly higher maximum sequence count as the dictionary increases, more 

than double that of the alphabetic layout This value is significant, as it highlights 

potential frustration with the system if a QWERTY layout is employed scrolling 

through 55 words is likely to cause irritation to even the most patient user 

Although clash count and maximum sequence count give a worst-case scenario 

of prediction accuracy, they provide useful insights for the design of interaction 

techniques because they highlight the extreme examples any system must be 

capable of handling However, the practical prediction accuracy of the system is 

better shown through the use of experiments simulating its use m practice

Percentage of words guessed correctly

The T9 prediction system, employed on most modern mobile phones, has a dic­

tionary size of 9025 words (Silfverberg et a l , 2000) Words are sorted with a
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Dictionary size

♦ Alphabetic 

—»-Q W E R T Y  

—* —  Optimised

Figure 4.2: Increase in percentage of words clashing as dictionary size increa­
ses.

■ Alphabetic 

QWERTY 

Optimised

Dictionary size

F igure 4.3: Increase in maximum sequence count as dictionary size increases.
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Training size 500,000 5,000,000 10,000,000 25,000,000
Dictionary size 29,801 80,262 111,129 170,053

T ab le  4 1 Dictionary word count for increasing training text size

Keyboard layout Prediction accuracy (Error rate)
Alphabetic 96 48 (3 52) 96 36 (3 64) 96 41 (3 59) 96 33 (3 67)
QWERTY 94 69 (5 31) 94 71 (5 29) 94 69 (5 31) 94 65 (5 35)
Optimised 98 37 (1 63) 98 26 (1 74) 98 25 (1 76) 98 24 (1 76)
Dictionary size 29,801 80,262 111,129 170,053

T ab le  4 2 Uni-gram prediction accuracy and error rate of known words as 
dictionary size increases

um-gram language model Tests by Silfverberg et al (2000) revealed tha t the T9 

system predicted the intended word with its first guess with 95 percent accuracy 

However, this level of accuracy is achieved only on words withm the dictionary, 

and no mention is made of the overall accuracy of the system if unknown words 

are taken into account The small size of the dictionary is mamly due to memory 

restrictions on mobile phones Our tests explored the effect of using increased 

language model training size and order on the prediction accuracy Our language 

models are trained on training corpora, ranging from 500,000 to 25 million words 

The size of the resulting dictionaries can be seen m Table 4 1

Ironically, as prediction accuracy improves, nearmg 100 percent, users assume 

that the system will predict correctly and neglect to check that the system has 

m fact predicted the correct word Consequently, the perceived accuracy of the 

T9 commonly results m rather cryptic SMS messages A quickly typed “I ’ll be 

home in 30 minutes”, might result m a somewhat confusing “I ’d be good m 30 

minutes” Thus, as systems become more accurate, the error rate, rather then the 

accuracy gives us an indication of performance This error rate corresponds to 

the percentage of known words withm the dictionary a user will have to correct 

as they type
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Training size (1000’s) 500 2500 5000 10000 25000
Percentage of words known 95 72 98 13 98 73 99 06 99 38

T ab le  4 3 Percentage of words known in test text as training text size incre­
ases

Increased language model training size

Table 4 2 shows the prediction accuracy, for known words, of each keyboard as 

the dictionary increases with um-gram language modelling From this table it is 

evident that, using um-gram prediction, the accuracy of initial prediction only 

decrease marginally (roughly 0 1 percent) as the dictionary increases m size 

The effect of keyboard layout on error rate is clear The alphabetic keyboard 

has an error rate twice that of the optimised keyboard layout, while the QWERTY 

error rate is 3 times that of the optimised keyboard

W ith only a slight decrease m withm-dictionary prediction accuracy as our 

language model training size increases, the benefits of increasing our training size 

and corresponding dictionary become clear if we examine the overall prediction 

accuracy of an unseen text, including those words that are not in the dictionary 

As the dictionary size increases from 29,801 to 170,053 words, the percentage of 

words known increases from almost 96% to over 99% (Table 4 3) This is the 

equivalent of typing an unknown word roughly once every 25 words, versus once 

every 160 words

Increased language model order

The benefit of using higher-order language models is clear if we graph the initial 

prediction accuracy of keyboards as the language model order and dictionary 

size increase Figure 4 4 shows the accuracy of withm-dictionary prediction for 

alphabetic, QWERTY and optimised keyboard layouts As we can see, the ac­

curacy of initial predictions increases steadily as the language model training 

size increases The effect is greatest for the QWERTY layout, which had the
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Figure 4.4: Prediction accuracy of known words as language model size incre­
ases

highest error rate, and less impressive for the optimised keyboard which already 

performed with high accuracy. The improvements are most significant as we 

move from context-insensitive uni-gram language modelling, to context-sensitive 

bi-gram language modelling, where there is a 30 percent reduction in prediction 

errors. Less dramatic gains are made as the language model order increases from 

bi-gram to tri-gram, where only a further 2 percent reduction is made in errors. 

These improvements are consistent with findings for word completion by Lesher 

et al. (1999), whose spot tests on higher quad-gram language models revealed 

even smaller gains relative to tri-grams.

P re d ic tio n - lis t le n g th

As mentioned in Section 2.2.7, immersive VR environments do not suffer from the 

same screen size restrictions as mobile phones or PDAs. Therefore our prediction 

system can potentially present more than one prediction simultaneously. Figure 

4.4 shows that despite improvements offered by the language model, the optimised 

keyboard still outperformed QWERTY, with an error rate of almost a 3rd that of 

QWERTY. However, if we increase the number of words a system may suggest,
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Keyboard Prediction list length
1 2 3 4 5

QWERTY 3.38 0.84 0.34 0.19 0.13
Alphabetic 2.39 0.48 0.18 0.09 0.06
Optimised 1.30 0.31 0.12 0.06 0.04

Table 4.4: Prediction error rate of known words with increasing prediction list 
length.

Alphabetic QWERTY Optimised

tri-gram bi-gram uni-gram

Figure 4.5: The effect of increasing language model order and training size on 
word- completion.

then the benefits of optimised keyboards become less pronounced.

Table 4.4 shows the prediction error-rate as the prediction-list size increases. 

At a list length of 5, the prediction accuracy approaches 100 percent and the diffe­

rences in keyboard layout are likely to have little effect. This is significant when 

designing our interface as it shows that while optimised keyboards will signifi­

cantly out-perform a QWERTY keyboard layout based on first prediction alone, 

an interaction technique which allows for the easy selection of up to 5 potential 

words will produce only negligible improvements for optimised keyboards.

4.2.3 Word com pletion accuracy

Tests for word completion were carried out concurrently with those for prediction 

accuracy. As with the word prediction tests, word completion tests were carried 

out with increasing language model training size and order.
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Increased language order and model training size

The effects of language model order and training size on word completion are 

similar to those of word prediction Using um-gram prediction, accuracy remains 

relatively unaffected by increased dictionary size Savings of roughly 10 percent 

are achieved using uni-gram prediction with a word completion list length of 

one, regardless of language model training size, with the optimised keyboard 

performing just slightly better then QWERTY (Figure 4 5) However, as with 

word prediction, increasing the language model order has a significant impact on 

word completion accuracy

Figure 4 5 shows the benefit of increasing iV-gram order for QWERTY, al­

phabetic and the optimised keyboard respectively The benefits of increasing the 

language model order are clearly visible, improvements m accuracy of over sixty 

percent are achieved with a QWERTY keyboard when we move from um-gram 

to tri-gram prediction As with word prediction accuracy, the improvements are 

most significant as we move from um-gram to bi-gram language modelling with 

less dramatic gams made as the language model order increases from bi-gram 

to tri-gram However, the benefits of using tri-gram order models over bi-gram 

increase as language model training size increase, which again is consistent with 

Lesher et al (1999)

Word completion list length

As mentioned in Chapter 2, two techniques for selection of complete words exist 

the first option is direct selection, whereby any word m a list of potential words 

can be selected directly, the second option is where the user must iterate though 

a list of selected words The benefits of direct selection is that a user may choose 

any word m the list at equal cost However, such a technique may not be feasible 

m immersive environments where possible selection techniques are determined by 

the input devices available Consequently, direct and iterative techniques were
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evaluated, allowing the advantages of using either technique to be weighed against 

their feasibility Word completion lists of length 1, 2, 3, and 5 were examined 

For iterative lists, the cost of one iteration through the list was considered to be 

the same as one keystroke, this may be generous depending on the interaction 

technique employed

Direct selection Table 4 5 shows the effect of increasing the language model 

training size on the percentage of characters saved with word lists of length 1, 

2, 3 and 5 respectively Using a tri-gram language model trained on 25 million 

words, over 29 percent of our test text can be saved using word completion with 

a list length of 5 This is less than the 55 percent reported by Garay-Vitoria and 

Gonzalez-Abascal (1997) However, this is to be expected, as the ambiguity of 

the keyboard makes prediction more difficult Nevertheless, a 29 percent saving 

of text typed represents a significant potential saving Of particular interest is 

that over half of the savings offered by word completion can be achieved with a 

word list length of just one

Iterative selection Table 4 6 shows the percentage of characters saved with 

increasing word list length with iterative selection Again, values are for a tri­

gram language model with a training size of 25 million The results indicate that, 

if a cost of just one keystroke is assigned to the iteration through the word list, 

list lengths greater then 2 will actually result m a decrease m performance This 

would indicate that, if a decision is based solely on word completion accuracy, 

word lists of 2 should be chosen if iterative selection is to be used

4 3 Conclusions and recommendations

In this chapter we evaluated the effect of keyboard layout, dictionary size and 

language model order on clash count, and word prediction and completion accu­

racy The purpose of these experiments was to guide designers m the selection
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4 3 Conclusions and recommendations

Keyboard Completion list length
1 n 2 3 5

QWERTY 16 74 22 21 24 88 27 92
Alphabetic 17 09 22 68 25 45 28 44
Optimised 17 71 23 18 26 18 29 14

Table 4 5 Percentage of characters saved with increased list length with direct 
selection

Keyboard Completion list length
1 2 3 5

QWERTY 16 74 17 57 15 78 10 37
Alphabetic 17 09 1 18 81 17 2 12 34
Optimised 17 71 18 16 31 11 13

Table 4 6 Percentage of characters saved with increased list length with ite­
rative selection

of potential keyboard layouts, language models, interaction techniques, and word 

list lengths for both word prediction and completion

In contrasting keyboard layouts, we found that, when compared to alphabetic, 

and optimised keyboards, the QWERTY keyboard performance is mixed, and 

the choice of keyboard will likely depend on the interaction techniques employed 

W ith larger dictionary sizes the maximum sequence count for the QWERTY 

keyboard approaches double that of optimal and alphabetic keyboards with a 

maximum sequence count of 55 for a dictionary of 170,000 words The accuracy 

of initial predictions is consistently lower than alphabetic and optimised layouts 

However, with word prediction lists of 5 words, the difference between keyboards 

is less pronounced Also, for word completion, the difference between keyboards 

is less evident Thus, if an interaction technique where users can select up to 5 

potential words from a predicted list is used, QWERTY will perform with similar 

accuracy to alphabetic and optimal keyboard layouts However, if the interaction 

technique used dictates that users must iterate through each incorrect prediction 

before selecting the correct one, then alphabetic or optimised keyboard layouts 

offer attractive alternatives
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4 3 Conclusions and recommendations

As with keyboard layouts, the word completion list length employed should 

be influenced by the interaction technique used If a direct selection technique 

is used, then list lengths of 5 will provide potential savings of up to 29 percent 

However, if an iterative selection technique is employed, shorter list lengths are 

advised, as maximum potential savings are achieved with a list length of 2 Fi­

nally, regardless of interaction technique employed, savings of 17 percent, half of 

all savings, can be achieved with list lengths of just 1

In examining dictionary size we found that, although clash count naturally 

increases with dictionary size for all keyboards, the withm-dictionary prediction 

accuracy remains unaffected if predicted words are sorted according to frequency 

The most obvious benefits of increased dictionary size is the percentage of words 

known Over 99% of words m our 250,000 word test corpus were known when 

our dictionary exceeded 170,000 words

The benefits of higher order language models become most apparent as the 

their training size increases The greatest gams are made moving from context 

insensitive um-grams to context sensitive bi-grams On average, prediction errors 

of known words are reduced by over 30 percent when tri-gram language models 

are used rather then uni-gram For word completion, tri-gram language modelling 

increases prediction accuracy by 60 percent
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Chapter 5

Gesture recognition for virtual 

typing

5.1 Introduction

Interaction with the virtual keyboard proposed in this thesis is dependent on 

the accurate recognition of key-press postures Ideally, the recognition system 

should be user-independent, yet accurate In the following chapter we will discuss 

various recognition errors, and their relevant impact m the context of text-entry 

We will examine the effects of dynamic posture recognition as a solution to the 

segmentation problem We will detail the results of empirical tests to examine the 

template matching techniques discussed m Chapter 2 Finally, we will suggest 

the use of a hybrid method for user independent key-press gesture recognition 

suitable for text-entry using datagloves

5 1 1  R ecognition accuracy

One of the key factors to facilitate the use of the virtual keyboards is the accurate 

and consistent recognition of intended key-presses Users familiar with standard 

keyboards, which, due to their explicit nature, have 100 percent recognition ac­

curacy, will quickly become frustrated with a virtual keyboard system if it does
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not behave m a similar manner to the physical keyboard they are accustomed 

to The faith of users m the system is undermined if their own occasional errors 

- where they bend the wrong finger - are compounded by errors made by the 

gesture recognition system Moreover, frustration levels will likely be affected 

by the type of errors the system makes As discussed m Chapter 2, errors m 

recognition can be classified as either false positives, false negatives, or misclas- 

sification errors These errors can have various consequences on the usability of 

any system, and the choice of a gesture recognition technique should take into 

account the likelihood of each type of error, and the corresponding effects

In the case of ambiguous virtual keyboards, errors can be ranked, in increasing 

order of severity, as follows

• False negatives

• False positives

• Misclassification

False negatives represent the least problematic of errors This is because, by 

providing auditory feedback, users can be notified when a key-press is recognised, 

and any key-press which is not recognised is quickly identified the lack of any 

feedback

False positives are equally identifiable, as the user will hear a sound upon 

recognition, and may then delete the unintended gesture However, false positi­

ves can be more destructive then false negatives if the system provides a more 

complicated gesture set then simple key-presses As well as having 10 key-press 

gestures, represented by the flexion of each of the 10 fingers, the system could also 

recognise a fist, or a pointing gesture, which could be assigned to functions such 

as exit, select, change mode, etc The false positive recognition of any of these 

special gestures would have a larger impact on the system, and might require 

more user intervention then the simple deletion of an extra key-press
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Misclassification errors represent the largest problem for ambiguous virtual 

keyboards, as they are difficult to identify by the user, and generally will not 

be noticed until a word, which the user feels should be m the dictionary, is not 

found This is due to the ambiguous nature of the keyboard, and the continuous 

changing of the active word, as the system tries to match the current sequence 

of key-presses to a viable word Users familiar with the system will ignore the 

active word until they have finished typing it, and it is only at this stage that 

they will recognise tha t an error has occurred This results m the user deleting 

most or all of the word, and attem pting to type the word again This is both 

frustrating and time consuming, and leads to high frustration with the system 

Like false positives, misclassification errors can also result m the recognition of 

unintended special gestures, which can be more complicated to remedy

An ideal system is one which accurately reflects the user’s intention sensi­

tive enough to eliminate false positives, but not record false negatives, but also 

forgiving enough to allow for variation between users and thus not misclassify 

gestures In ranking a gesture recognition algorithm, errors must be evaluated 

accordingly, thus misclassification is the most im portant factor, followed by false 

positives, and finally false negatives

Additional requirements for an ideal gesture recognition system, though not 

as important, would be ease of programming and adaptability of the system, and 

negligible training time

5 1 2  D ynam ic posture recognition

As previously mentioned, posture recognition only takes finger posture at a par­

ticular moment into account, whereas dynamic posture recognition, as we have 

defined it, measures finger posture over time By measuring finger flexion over 

time, we can calculate the speed at which fingers are travelling at any given 

moment This extra information is useful m determining the current state of a 

posture Specifically, this information helps avoid early false positive recognition
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which can arise due to the segmentation problem, discussed m Section 2 4 7, by 

identifying transition states

The creation of a typical posture can be broken into 3 sections

1 Forming gesture

2 Gesture complete

3 Returning to neutral

Posture recognition should only take place m the second section as, depending 

on the gesture set, certain gestures may require the hand to pass through others 

during formation and after completion

To counter this, a system could retrospectively cancel a previous posture 

if a second posture was recognised withm a short time However, this is not 

ideal as it would involve creating a hierarchy of postures that determined which 

postures should be deleted if another posture was subsequently recognised and 

which should not This would then have to be re-evaluated every time a new 

posture was added to the posture set Also, the seemingly erratic responses of 

the system as it cancels postures might prove disconcerting to the user

A simpler approach, is to simply not recognise postures until they have been 

completed By analysing finger speed, we can identify sections 1 and 3 of the 

creation of a posture, as the speed at with the fingers are moving is considera­

bly faster Thus, using dynamic posture recognition, postures should only be 

recognised if all of the fingers are travelling below a threshold speed

This is clearly visible if we graph the flexion of the fingers, and the correspon­

ding finger speed, during the creation of a typical posture (Figures 5 1 and 5 2) 

Visual scanning of a large set of similarly graphed postures by eye revealed that a 

speed above 4% per millisecond (ms) could be considered a transition period To 

confirm this, we plotted the accuracy of recognition, while varying the threshold 

speed, above which, gestures could not be recognised (Figure 5 3) This confirmed
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F in g e r  f le x io n

i

Thumb 
Index 
M id d le  

■ R in g  
L it t le

V a lid
G e s tu re

Figure 5.1: Sample gesture flexion An example of gesture, with slight sympa­
thetic bending visible.

F in g e r  s p e e d

 Thumb

 Index
 M id d le
 R in g
—  L it t le

□ V a lid
G e s tu re

Figure 5.2: Sample gesture speed By analysing finger speed, sections 1, 2 and 
3 of a posture are clearly identifiable because the speed falls below 
a threshold.

our initial findings, as the lowest error rates were recorded between 3.5%/ms and 

4%/ms.

5.2 Form al evaluation  of previous tem p la te  system s

5.2.1 O utline

In the search for an effective, user independent posture recognition technique 

suitable for text-entry with dataglove, we undertook to evaluate techniques for 

simple posture recognition suggested by Sturman (1992), Evans et a l (1999) and 

Kramer et al. (1991), with particular focus on the types of recognition errors 

made, and the effects of sympathetic bending. Also of interest was the effect of 

dynamic posture recognition on reducing errors caused due to the segmentation
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speed (%flexion/ms)

Figure 5.3: Recognition error rates as threshold speed increases Error rates 
drop to 3.7% at a finger speed threshold of 4%/ms, and increase 
as the threshold value is increased.

problem.

5.2.2 Test procedure

A permanent database of gestures was created to test each algorithm. Five users, 

wearing 5DT gloves, were recorded performing each gesture. The gloves were 

calibrated for each user before each recording. The total range of motion of 

each finger was measured, and the flexion recorded in the database was scaled 

according to this range. To create the gesture database, each user was shown a 

pair of virtual hands. Individual fingers on each virtual hand were highlighted to 

indicate the desired posture. Users were requested to create the posture indicated 

by the highlighted fingers. (Figure 5.4).

Six postures were tested: one with each of the fingers flexed individually, 

which are necessary for virtual typing, and a fist gesture, which is a reserved 

gesture in our system used to signal delete. D ata from the gloves was then 

recorded and tagged as users made each gesture. Users indicated the end of the 

gesture by pressing a physical key with the non-active hand. Users were shown 

the six postures for the active hand in random order, at which point the active 

and non-active hand were switched. This process was repeated several times for 

each user. The resulting data was then inspected by eye, and incorrect gestures - 

where users created the wrong gesture - were removed. In total over 500 gesture
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Figure 5.4: Hightlighted gesture Users created the indicated gesture, then 
pressed a physical key and were shown a new gesture.

examples remained after errors had been removed. The data was then fed to each 

of the gesture recognition techniques, and the accuracy of each method noted. 

The errors were split into two categories: false negatives, and misclassification. 

Due to the nature of the test, it was impossible for false positive errors to occur, 

as the database only contained intended gestures.

5.2.3 R esults

S tu rm a n ’s te ch n iq u e  Sturman (1992) suggests thresholds of 80% and 20% 

flexion for classification of flexion and extension respectively. Using these values 

we attem pted to recognise gestures performed by our test subjects.

Accuracy of the system was tested using static and dynamic posture recogni­

tion. As is clearly visible from Tables 5.1 and 5.2, accuracy is quite low for both 

techniques. Accuracy is higher for static gesture than for dynamic measuring 

due to the fact that by measuring gestures as they are in the process of being 

formed, static recognition identifies some gestures before sympathetic bending 

has occurred.
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/* Columns Time [L]ittle [R]ing [M]lddle [IJndex [T]humb 
Gesture Middle finger
Time L R M I T
39568 6 0 0 0 0 2
39568 6 0 0 0 0 4
39568 6 0 0 0 0 6
39568 6 0 0 0 0 10
39568 7 0 0 0 0 14
39568 7 0 0 15 0 20
39568 7 0 0 47 0 24
39568 7 0 0 100 0 30
39568 7 0 1 162 0 36
39568 8 0 17 204 0 42
39568 8 0 32 233 0 42
39568 8 0 39 246 0 42
39568 8 0 42 249 0 40
39568 8 0 32 239 0 34
39568 9 0 10 200 0 26
39568 9 0 0 128 0 12
39568 9 
Gesture

0 0 51 
Little finger

0 0

Time L R M I T
39580 0 0 0 0 52
39580 0 0 0 0 54
39580 14 0 0 0 50
39580 64 0 0 0 46
39580 130 0 0 0 46
39580 1 183 0 0 0 44
39580 1 215 0 0 0 42
39580 1 233 0 0 0 44
39580 1 237 0 0 0 42
39580 1 220 0 0 0 40
39580 2 178 0 0 0 38
39580 2 93 0 0 0 20
39580 2 0 0 0 0 24

Example 5 1 Tagged data recorded from user, flexion scaled from 0-255 based 
on user calibration

Analysis of the errors reveals that over 99% of errors are false negatives, indi­

cating that the 80% and 20% thresholds suggested by Sturman are too restrictive, 

and cannot be comfortably made for simple finger presses This hypothesis was 

tested by relaxing the thresholds suggest by Sturman to 60% and 50% for flexion 

and extension respectively, gestures were recognised if the intended fingers are 

flexed more then 60% and the remaining fingers remain under 50%

Results with this new ratio (Table 5 3) showed a large reduction m errors, with 

an overall accuracy of 92% The use of dynamic gesture recognition only lmpro-
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G e s t u r e % l i t t le % ring %  m id d le % ind ex % th u m b %  d e le te % n o t recogn ised

l i t t l e 68 54 0 00 0 00 0 00 0 00 0 00 31 46

r in g 0 00 79 55 0 00 0 00 0 00 0 00 20 45

m i d d le 0 00 0 00 72 29 0 00 0 00 0 00 27 71

in d e x 0 00 0 00 0 00 77 38 0 00 1 19 21 43

t h u m b 0 00 0 00 0 00 0 00 86 90 0 00 13 10

d e l e t e 0 00 0 00 0 00 0 00 0 00 63 64 36 36

Table 5 1 Confusion matrix of gestures recognised using Sturman’s technique 
with flexion and extension thresholds of 80% and 20% respectively 
Each row shows the intended posture, with the corresponding po­
sture recognised

G e s t u r e % l i t t le % ring % m id d le % ind ex % th u m b % d e le te % n o t recogn ised

l i t t l e 66 29 0 00 0 00 0 00 0 00 0 00 33 71

r in g 0 00 78 41 0 00 0  00 0 00 0 00 21 59

m i d d le 0 00 0 00 61 45 0 00 0 00 0 00 38 55

in d e x 0 00 0 00 0 00 73 81 0 00 1 19 25 00

th u m b 0 00 0 00 0 00 0 00 86 90 0 00 13 10

d e l e t e 0 00 0 00 0 00 0 00 0 00 60 23 39 77

Table 5 2 Confusion matrix of Sturman’s technique using dynamic posture 
recognition with flexion and extension thresholds of 80% and 20% 
respectively

ved accuracy slightly, but reduced misclassification errors caused by premature 

recognition, in favour of false negative errors due to sympathetic bending

Sturm an’s method will always under-perform with users who have strong 

sympathetic bending This is due to the fact that sympathetic bending can cause 

two fingers to cross the threshold value, leading to a situation of ambiguity which 

Sturm an’s technique cannot resolve, with a resulting high error count

M ax im u m  flexion m e th o d  The maximum flexion technique, as described by 

Evans et al (1999), can recognise 5 postures, 1 for each finger and the thumb 

In order to recognise extra gestures, such as a fist, exceptions were made to the 

standard technique A fist is recognised whenever all 4 fingers are above the 

minimum threshold value and is given higher priority then all other gestures 

Although adequate for a fist posture, this priority technique would quickly be­
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G e s t u r e % l i t t le % ring % m id d le %  ind ex %  th u m b % d e le te % n o t recogn ised

l i t t l e 85 39 2 25 0 00 0 00 0 00 0 00 12 36

r in g 0 00 96 59 0 00 0 00 0 00 0 00 3 41

m i d d le 0 00 0 00 97 59 0 00 0 00 0 00 2 41

in d e x 0 00 1 19 0 00 95 24 0 00 0 00 3 57

th u m b 0 00 0 00 0 00 0 00 97 62 0 00 2 38

d e l e t e 1 14 15 91 1 14 2 27 0 00 78 41 1 14

Table 5 3 Confusion matrix of gestures recognised using Sturman’s technique 
with flexion and extension thresholds of 60% and 50% respectively

G e s t u r e %  l i t t le % r in g % m id d le % ind ex %  th u m b % d e le te % n o t recogn ised

l i t t l e 78 65 1 12 0 00 0 00 0 00 0 00 20 22

r in g 0 00 96 59 0 00 0 00 0 00 0 00 3 41

m i d d le 0 00 0 00 95 18 0 00 0 00 0 00 4 82

in d e x 0 00 0 00 0 00 95 24 0 00 1 19 3 57

t h u m b 0 00 0 00 0 00 0 00 97 62 0 00 2 38

d e l e t e 0 00 3 41 0 00 0 00 0 00 93 18 3 41

Table 5 4 Confusion matrix of Sturman’s technique using dynamic posture 
recognition with flexion and extension thresholds of 60% and 50% 
respectively

come unworkable if more gestures were added In fact, many of the 32 feasible 

simple postures are only possible if a maximum threshold is introduced, similar 

to Sturm an’s technique

This adapted maximum flexion technique was tested using both static and 

dynamic posture recognition As can be seen from Table 5 5, overall accuracy 

using static recognition is quite low This is considerably lower then the 99% 

accuracy reported by Evans et al This is mamly due to addition of the fist 

gesture to the system, which was often misclassified while it was being formed 

In fact, 94% of the gestures misclassified were a result of fist gestures

Furthermore, Evans et al indicated that aural feedback was given m their 

experiments during the creation of the gestures, thus false negatives were unlikely 

to occur Factoring these favourable conditions - where only 5 gestures were 

tested, no fist gesture was tested, and no false negatives were possible - accuracy
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G e s t u r e % l i t t le %  r in g % m id d le % index % th u m b % d e le te % n o t recogn ised

l i t t l e 93 26 4 49 0 00 0 00 0 00 0 00 2 25

r in g 0 00 96 59 0 00 0 00 0 00 0 00 3 41

m i d d le 0 00 0 00 98 80 0 00 0 00 0 00 1 20

in d e x 0 00 1 19 0 00 95 24 0 00 0 00 3 57

t h u m b 0 00 0 00 0 00 0 00 97 62 0 00 2 38

d e l e t e 6 82 40 91 25 00 18 18 0 00 7 95 1 14

Table 5 5 Confusion matrix of static postures recognised using the maximum 
flexion technique

G e s t u r e % l i t t le %  ring % m id d le % index %  th u m b %  d e le te % n o t recogn ised

l i t t l e 94 38 3 37 0 00 0 00 0 00 0 00 2 25

r in g 0 00 96 59 0 00 0 00 0 00 0 00 3 41

m i d d le 0 00 0 00 98 80 0 00 0 00 0 00 1 20

in d e x 0 00 0 00 0 00 95 24 0 00 1 19 3 57

t h u m b 0 00 0 00 0 00 0 00 97 62 0 00 2 38

d e l e t e 0 00 7 95 0 00 0 00 0 00 90 91 1 14

Table 5 6 Confusion matrix of dynamic postures recognised using the maxi­
mum flexion technique

of 98 9% would have been achieved

Considerable gams were achieved in recognition accuracy using dynamic po­

sture recognition As can be seen in Table 5 6, accuracy increased to 96% when 

finger speed was considered The increase m accuracy is largely due to the impro­

ved accuracy recognising the fist posture, which is less likely to be misclassified 

during creation, as fingers are moving at high speed

E u clid ean  d is ta n c e  Two methods were originally used to define posture tem­

plates, to which Euclidean distance would be measured Firstly, postures were 

defined as the average finger flexion values of recorded users This data was col­

lected m a similar manner to the gesture database, but only the final posture 

was recorded D ata from the gloves was only recorded and tagged when users 

indicated they had formed a gesture by pressing a physical key with their non 

active hand This was contrasted with a simpler technique, where templates were
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defined as ideal postures Thus, for example, a little finger key-press would be de­

fined as 100% flexion of the little finger, and 0% flexion for the remaining fingers 

Initial tests showed no difference m performance between our posture templates, 

thus, the second method of the two, which required no training data, was used 

for the remainder of tests

Two Euclidean distance classifiers were explored as potential techniques for 

posture recognition, as suggested by Kramer et al (1991) one with a distance 

threshold, below which postures could not be recognised, and another which 

always classified the closest posture For the first technique, choosing the ideal 

distance threshold involves a trade off between two errors A large distance 

threshold will result m a high false positive rate as the system is essentially too 

sensitive, while a low threshold value will lead to a high false negative rate An 

alternative to this, is to always choose the closest gesture irrespective of distance 

To facilitate this, we created a flat gesture, which when recognised, corresponds to 

no gesture Both of these techniques were initially tested using static and dynamic 

posture recognition However, these quickly revealed tha t dynamic recognition 

was superior, thus m-depth testing focussed on analysing the difference between 

both techniques

Using the distance threshold technique, analysis revealed a threshold distance 

of 61 produces optimum accuracy Using dynamic posture recognition, this thres­

hold value produced gesture accuracy of 95% (Table 5 7)

G e s t u r e %  l i t t le % r in g % m id d le %  ind ex %  th u m b %  d e le te % n o t recogn ised

l i t t l e 83 15 0 00 0 00 0 00 0 00 0 00 16 85

r in g 0 00 100 00 0 00 0 00 0 00 0 00 0 00

m i d d le 0 00 0 00 97 59 0 00 0 00 0 00 2 41

in d e x 0 00 0 00 0 00 97 62 0 00 1 19 1 19

t h u m b 0 00 0 00 0 00 0 00 97  62 0 00 2 38

d e l e t e 0 00 4 55 0 00 0 00 0 00 93 18 2 27

Table 5 7 Confusion matrix of dynamic postures recognised using the Eucli­
dean distance with a threshold of 61
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Although accurate, the majority of errors are due to false negatives Closer 

inspection of the data reveals tha t these errors are usually cases of strong sym­

pathetic bending as opposed to weakly formed gestures Example 5 2 is a typical 

example of this, where the sympathetic bending of the ring finger causes a false 

negative error, when clearly a gesture is intended

/* Flexed little finger posture */
[ 99 2, 99 1, 24 3, 7 8, 9 4]

Example 5 2 Little finger flexed with strong sympathetic bending of the ring 
finger

This contrasts with the closest gesture technique Although the accuracy of

the closest gesture technique is only marginally better at 96% (Table 5 8), closer

analysis reveals that the majority of misclassification errors were a result of weakly 

formed gestures, rather then gestures with large sympathetic bending, which were

recognised with high accuracy Example 5 2 was accurately recognised, however
*

Example 5 3 was not

/* Flexed index finger posture */
[ 0 0, 0, 45 1 3 9]

Example 5 3 Weak index finger flexion

G e s t u r e %  l i t t le %  r in g %  m id d le %  index % th u m b % d e le te % n o t recogn ised

l i t t l e 92 13 3 37 0 00 0 00 0 00 3 37 1 12

r in g 0 00 96 59 0 00 0 00 0 00 0 00 3 41

m i d d le 0 00 0 00 98 80 0 00 0 00 0 00 1 20

in d e x 0 00 0 00 0 00 96 43 0 00 1 19 2 38

t h u m b 0 00 0 00 0 00 0 00 97 62 0 00 2 38

d e l e t e 0 00 5 68 0 00 0 00 0 00 93 18 1 14

Table 5 8 Confusion matrix of dynamic postures recognised using the closest 
posture technique

Hybrid m ethod Finally, we used a hybrid method which combined aspects 

from both the maximum flexion and Euclidean distance techniques Although

115



5 2 Formal evaluation of previous template systems

the technique employed by Evans et al is accurate and performs well with strong 

sympathetic bending, it has a limited set of gestures which can only be increased 

by using priority based exceptions One alternative is to use the Euclidean di­

stance to choose the intended posture in place of the maximum flexion suggested 

by Evans et al Thus, if sympathetic bending causes two or more postures to be 

recognised, the Euclidean distance to each of these potential postures is measu­

red, and the closest one chosen as the intended posture This technique allows 

for a larger proportion of the 32 simple postures possible

This technique was tested m conjunction with the maximum flexion technique 

The results were identical, although no improvement is achieved using Euclidean 

distance, no deterioration m performance is noted either Thus this technique 

has the accuracy of maximum flexion technique, without its limitations

5 2 4 Analysis

Five methods for posture recognition were tested Of these, four performed with a 

higher degree of accuracy when dynamic posture recognition -  which takes finger 

speed into account -  was applied

Technique T ype A ccuracy % False neg % M isclassified %

S tu rm an  80 /20 S 75 25 0
S tu rm an  80/20 D 71 29 0
S tu rm an  60/50 S 92 4 4

S tu rm an  60/50 D 93 6 1

M axim um  th resho ld S 82 2 16
M axim um  th resho ld D 96 2 2
E uclidean T hreshold D 95 4 1
E uclidean closest D 96 2 2
E uclidean hybrid D 96 2 2

Table 5 9 Summary of the accuracy of tested techniques using static and dy­
namic posture recognition, and the corresponding errors S and D 
indicate the type of posture recognition used static and dynamic 
respectively '

Sturm an’s technique, although allowing for a large gesture set, proved too
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restrictive for users with sympathetic bending The maximum flexion technique, 

suggested by Evans et a l , although suitable for users with sympathetic bending, 

allowed for only a small subset of the gestures possible with Sturm an’s techni­

que Finally, we analysed three Euclidean distance techniques firstly a distance 

threshold technique, which recognised a posture once it came within a prede­

termined distance of a posture template, secondly, a closest posture technique, 

which recognised the closest posture at any stage, lastly a hybrid, flexion thres­

hold technique, which used Euclidean distance to determine the closest posture 

m cases where more then one finger passed a flexion threshold

Each of the Euclidean distance techniques performed with a high accuracy, 

with recognition rates of 95 percent and above W ith little to choose between 

them m terms of accuracy, error types play a large part m deciding which is most 

suitable for the posture recognition needed to interact with the proposed virtual 

keyboards As mentioned previously, error types can be ranked m order of seve­

rity False negatives, where an intended gesture made by the user is not identified 

by the system, prove to be the least problematic when interacting with a virtual 

keyboard However, false negatives caused due to sympathetic bending prove 

frustrating to users, who, thinking the system hasn’t recognised their gesture 

because it isn’t strong enough, often unintentionally exaggerate the sympathetic 

bending by attem pting to create a stronger gesture

Closer inspection reveals that, of the three Euclidean techniques, each have 

aspects which dictate the possible errors Each divide the feature space differently 

and thus have different characteristics

A system using a distance threshold is likely to suffer from false negative 

errors due to sympathetic bending A compromise must be reached when choo­

sing a threshold distance If the distance is too great, the system will be too 

sensitive, which leads to false positive classifications However, by reducing the 

threshold distance, we are likely to leave areas of the feature space unaccounted 

for, which leads to increased false negatives Thus strong postures, which have
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strong sympathetic bending, are less likely to be classified, when clearly a posture 

is intended

A system measuring the closest posture will never suffer from this problem 

This is because the entire feature space is divided between postures, and a strong 

posture will always be recognised as something However, although reducing false 

negative errors, this will naturally lead to the increased likelihood of misclassifica- 

tion errors This is due to the cumulative nature of Euclidean distance, whereby 

the light flexion of other fingers combine to increase the overall distance between 

a created posture and the intended posture template As we move further away 

from a template posture, the probability of misclassification naturally increases

Finally the hybrid Euclidean distance technique offers perhaps the best option 

Like the closest Euclidean technique, it will have no false negative errors due to 

strong sympathetic bending Its advantage, however, lies m the reduced number 

of postures which the system must choose between If two fingers are flexed passed 

the threshold value, then the system must only choose between these postures, 

rather then the entire gesture set By reducing the gesture set examined, we are 

reducing the potential for misclassification errors

Example 5 4 was recognised correctly by the hybrid technique, but misclas- 

sified as a fist by the closest gesture technique, and simply not recognised as a 

gesture (false-negative) by the threshold technique This was due to the fact that 

the hybrid technique only examined the distance to the little, ring, and middle 

posture templates, as the weak index finger flexion excluded the fist as a possible 

gesture (in this case the little finger was chosen because, although equidistant to 

the ring finger, it was simply examined first and no other posture was closer)

/* Flexed little finger posture */
[ 100 100, 87 5, 24 3, 7 5]

E x am p le  5 4 Little finger with very strong sympathetic bending
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5.3 Conclusions and recommendations

In choosing a posture recognition technique, the type of postures to be created 

play a large role m the complexity of the recognition algorithm employed Po­

stures for virtual typing, which require only fully flexed or extended fingers, are 

classified as simple postures Due to its reduced complexity, simple posture reco­

gnition should ideally be user independent, yet accurate This is hindered by the 

large variation m dexterity between users, who will suffer sympathetic bending to 

lesser or greater extent Segmentation of postures may prove problematic if the 

posture set contains postures which can be mistakenly recognised while another 

is being formed However, measuring finger speed a well as flexion effectively 

counters this problem

For virtual typing, the posture set is potentially quite small, with a minimum 

of only 5 postures needed The maximum flexion technique suggested by Evans 

et al is sufficient for a posture set of this size However, the addition of extra 

postures will naturally enhance the interaction possible Exit,, Delete, or Car­

nage return gestures are just some of the possible uses for extra postures The 

maximum flexion technique is less suited to an increased posture set Measuring 

the Euclidean distance to possible postures is an effective method for classifying 

these larger simple posture sets Three variations have been described One with 

a distance threshold, one which simply chooses the closest at all times, and a 

hybrid technique with a flexion threshold In choosing a technique, the types of 

errors likely to occur should be considered Misclassification errors are the least 

desirable errors m a predictive typing environment as they are the hardest to iden­

tify during typing Of all the techniques tested the hybrid Euclidean technique 

is recommended This is due to its characteristics, which mean it performs well 

with users with strong sympathetic bending, while being less likely to commit 

misclassification errors

Finally, it should be noted, tha t although we have discussed the benefits of
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A B

Figure 5 5 Two fingered point Without bending the thumb (A), the gesture 
is indistinguishable from a flexed little finger with strong sympa­
thetic bending of the ring finger With the thumb flexed (B), the 
gesture is easier to identify

adding to the posture set m order to increase interaction possibilities and recom­

mended techniques to recognise these increased posture sets, care should be taken 

that extra postures are chosen with consideration for sympathetic bending The 

most effective method for accurate posture recognition is simply ensure tha t ge­

stures not unnecessarily similar A simple two fingered point posture, for example 

(Figure 5 5a), would be indistinguishable from a flexed little finger with strong 

sympathetic bending of the ring finger However, it would be easier to distinguish 

if it was made m combination with a flexed thumb (Figure 5 5b), which remains 

relatively unaffected to  sympathetic bending when the little and ring fingers are 

bent Thus, although the 32 potential postures theoretically possible might not 

be available, an adequate posture set is certainly possible
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Chapter 6

Interaction techniques for 

predictive text-entry

6.1 Introduction

This chapter will examine interaction techniques suitable for use with ambiguous 

virtual keyboards Using the task decomposition, we will create a taxonomy 

of predictive text-entry We will then examine some of the selection techniques 

possible with the 5DT dataglove and combine these with our taxonomy to suggest 

potential interaction techniques for our ambiguous text-entry system Finally, we 

will conduct experiments to evaluate the selection techniques suggested

6.2 Interaction w ith ambiguous keyboards A brief 

discussion

Before discussing the design of interaction techniques, it is perhaps useful to 

review the theory of dictionary-based ambiguous text-entry, and discuss the im­

portance of effective interaction techniques

Mapping more then one letter to a key results in a reduced keyboard The 

advantage of such keyboards is the increased ease of key selection Users must
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select between eight unique keys rather than twenty-six1 This eases the problem 

of key selection, but causes an inherent ambiguity while typing, as the system 

must attem pt to determine the intended key Taking advantage of the entropy 

of the English language, dictionary lookup provides an effective solution to this 

problem However, 100% perfect prediction is impossible, thus, the ease afforded 

by the reduced keyboard is offset by the need to resolve incorrect predictions by 

the system Central to the effective use of ambiguous keyboards for text-entry is 

the disambiguation process, where the user confirms tha t the predicted word is 

correct, or chooses an alternative The benefits of ambiguous keyboards are lost 

if the interaction techniques used to disambiguate words are not efficient

A further benefit of using a dictionary to aid prediction, is the potential to 

increase user throughput by predicting complete words before they are finished 

Here, as with word prediction, effective interaction techniques are necessary The 

time taken to highlight and select complete words must be less then the time take 

to simply finish the word by typing normally

6 3 A taxonom y of predictive text-entry

In Section 2 5 4, we discussed the benefits of task decomposition, by decomposing 

a task into sub-tasks, we can identify the core components required to perform 

a task This allows us to create interaction techniques for our overall task as a 

whole, by mapping interaction methods to each sub-task

Interaction with our ambiguous keyboard can be decomposed into two fun­

damental sub-tasks Firstly, the selection of virtual ambiguous keys This is the 

primary selection task m our system, and will be the most commonly performed 

interaction with the system Secondly, the selection of ambiguous or complete 

words

The taxonomy of selection has already been discussed (Figure 2 14) The

1In practice, ambiguous keyboards with as few as three keys have been used However, our 
own system will usually have eight
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Figure 6 1 Taxonomy of predictive text-entry

task of predictive text-entry can be seen m as an extension of this, where both 

subtasks map directly to the fundamental task of selection (Figure 6 1)

Having decomposed our task, the benefits of creating a taxonomy become 

clear By deconstructing the task into its components, we can create various 

interaction techniques by combining different sets of core-components The pro­

blem of creating an interaction technique suitable for predictive text-entry then 

becomes a problem of combining possible interaction techniques for the core- 

components Naturally, not every combination will be practical or even possible 

depending on the input technology available Consequently, creating an interac­

tion technique involves choosing between a sub-set of plausible techniques given 

our input capabilities

6 3 1 V isual aspects o f word selection a discussion

Several options are available for the visual presentation of predicted and com­

plete words The method in which words are visually presented will dictate the 

interaction techniques which are used to select them These were explored using 

our prototype application, evolving over time
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6 3 A taxonomy of predictive text-entry

W o rd  p re d ic tio n  Our initial prototype system adhered closely to the predic­

tion style used m the T9 system for mobile phones As a user typed, the most 

likely word was suggested If the word suggested was not the one intended by the 

user, alternatives were selected by performing a next gesture Upon recognition 

of the next gesture, the system displays the next most likely word This process 

is repeated until the intended word was shown, at which point the user accepts 

the word with a select gesture

This technique was then augmented with colour to provide more information 

to the user Words coloured green indicated that the prediction was one of several 

possibilities, signifying that users could iterate through alternative words if the 

predicted word was incorrect Words were coloured amber if only one word m 

the dictionary matched the current key sequence, indicating tha t no iteration was 

possible Finally, words were coloured red to indicate tha t the last key-press had 

resulted m a key sequence that didn’t match any word m the dictionary This 

colour scheme augmented the original system, providing more information to the 

user However, by showing only the most likely prediction, the system forced the 

user to iterate through predictions, unsure of what the next word offered might 

be, or even if the desired word was m the dictionary

An alternative solution is to offer an ordered list of words, ranked according 

to their likelihood This technique shows users all (or at least more) of the 

possible matching words simultaneously The benefit of this is that, should a 

suitable interaction technique exist, the user can directly select the desired word, 

without needmg to iterate though alternatives first In Chapter 4 we reviewed the 

accuracy of prediction with increasing list length, and language size and order 

Our experiments showed that, for a trigram language model with a training size 

of 25 million words, prediction accuracy of 99 9 percent could be achieved with 

list lengths of five Thus, m discussing interaction techniques to be used, it will 

be assumed that lists of length five will be used by default, with the provision for 

extra words made according to the selection technique used
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Wediesdayl wa
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shington

(a) (b) (c)

Figure 6.2: (a) Microsoft Word Example (b) Simple greyed out technique (c)
List of words which map to the current sequence interpretation

W ord  co m p le tio n  As with word prediction, various presentational possibilities 

exist for complete words. The simplest of these is the tab completion style. This 

is offered by most Unix consoles2 and with a slightly augmented version, where 

the whole word is offered, in Microsoft Word (Figure 6.2a). Here, the most likely 

ending to the sequence of keys entered thus far is shown, greyed out. The user 

may simply choose to ignore the ending, or complete the word using a tab gesture 

(Figure 6.2b). This can further be augmented by showing a list of potential 

complete word endings which map to the current word sequence interpretation 

(Figure 6.2c). However, this requires a second gesture to iterate through each 

ending, or a separate selection gesture for each ending.

A problem with these tab completion styles is that, with ambiguous key­

boards, the most likely complete word may not match the current interpretation 

of what has been typed so far. For example, while typing winning on an alphabe­

tic keyboard, the word completion system might guess the user’s intention after 

three letters. However, the first three ambiguous keys spell the words who and 

win. Statistically, who is more likely then win. Here, the greyed out ending, ning 

after who, would be confusing. Therefore, tab complete systems for ambiguous 

keyboards must either offer the entire word separately, or only offer endings which 

map the current interpretation of the typed sequence. An alternative is to of­

fer complete words irrespective of the current estimation of the word sequence

2The Unix console do not show potential endings, but leave it to the user to decide if the 
current directory contains any other words with the same beginning.
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Figure 6.3: (a) Complete words displayed irrespective of sequence interpreta­
tion (b) Predicted and complete words shown together

at|
in
on

attention

inform

Figure 6.4: Predicted and complete words displayed on separate lists 

(Figure 6.3a).

Finally, any proposed word completion technique cannot be considered in 

isolation. Rather, is must be considered in context, and thus, also facilitate the 

selection of predicted words. If list selection is to be used for word prediction 

as well as word completion, then two options exits: the lists can be combined 

(Figure 6.3b), or they can be separated (Figure 6.4). The advantage of a joint 

list is tha t only one interaction technique is needed to select either predicted or 

complete words. The disadvantage is the possible confusion such a list might 

cause.

We have opted for a separate list of words in our system for several reasons. 

Firstly, using a separate list allows for a set number of words to be offered in 

our word completion list irrespective of the number of ambiguous words which 

map to the current word sequence. Secondly, the graphical nature of VR affords
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Figure 6.5: Word prediction and completion in use

content-rich environments allowing users to scan or ignore the complete words as 

they type. Thirdly, the use of datagloves to select words from the predicted or 

complete words means that any one-handed interaction technique used to select 

objects from the predicted word list, can be mirrored on the other hand for the 

complete word list. By having mirrored interaction techniques, the user must 

only learn one technique, reducing the cognitive load.

Figure 6.5 shows our final visual representation of the virtual keyboard, as well 

as predicted and complete word lists. Predicted words are offered on the left, with 

complete words offered on the right. Having decided on the visual presentation 

of the system, we must then develop interaction techniques with which to use it. 

In the next section we will consider interaction techniques possible with the 5DT 

dataglove.
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6 4 5DT dataglove* Possible selection techniques

In Section 2 4 2 we reviewed the 5DT dataglove 5 or 5th Glove To briefly recap, 

the 5DT glove uses proprietary fibre optic based flexion technology to measure 

overall finger and thumb flexion The 5 sensor model, which we use during the 

course of our experiments, does not measure finger abduction It is fitted with 

a 2-axis tilt sensor, which measures 120 degrees of pitch and roll The glove 

does not measure yaw (Figure 6 6), nor does it track the hand’s position in 3D 

space Although measuring yaw and 3D position is possible with addition of extra 

sensing equipment, the interaction techniques considered here are limited to those 

suitable for use with just the sensors supplied with the glove W ithout adding 

separate 3D positional tracking technology, many of interaction techniques for 

selection discussed m Section 2 5 5 are unfeasible However, although the classic 

natural interaction with objects typical of VR applications may not be possible, 

there exist sufficient interaction possibilities to create an effective technique for 

text-entry with ambiguous keyboards The five finger sensors allow for posture 

recognition without the need for user training Combined with this, the tilt sensor 

offers 2-DOF, making it suitable for menu interaction, and allows for an adapted 

2D pointing technique Finally, many of the techniques discussed m Section 2 5 5 

use 6-DOF for selection Although well suited to the selection of virtual objects, 

6-DOF interaction is not needed for the tasks we wish to perform Accurate 

control of 6-DOF adds an unnecessary burden upon users when interaction is 

possible with fewer degrees of freedom

2D p o in tin g  Although possible, 2D pointing is somewhat unnatural using the 

5DT glove, pointing is usually performed through the 2-DOF combination of 

pitch and yaw (Figure 6 6) These correspond to movement m the XY plane 

The 5DT dataglove does not measure yaw, but an adapted pointing technique 

can be created by mapping the roll to the Y axis m place of yaw However,
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y

Figure 6.6: 6-DOF movement of the hand. Movement along, and rotation 
about the 3 axes

although replacing yaw with roll maintains the 2-DOF needed for 2D pointing, 

the movement necessary to select objects is unnatural and not intuitive. Pointing 

is more akin to directing a mouse pointer than controlling a ray emanating from 

the hand.

G e s tu re  reco g n itio n  Theoretically, the five fingers of the 5DT data glove al­

low for the recognition of 32 simple postures (Section 48, Page 2.4.5). W ith two 

datagloves, this figure increases to 1024 if performed simultaneously. Although 

many of these may be impractical, there exist many comfortable gestures. Howe­

ver, without a clear identifiable mapping between a gesture and an object, users 

may be forced to remember seemingly arbitrary gestures.

One solution to this is the use of tulip menu style mapping of fingers to items. 

Here each individual finger maps to an item and the user simply flexes the finger 

which maps to the item they require. The benefit of this technique is the clear 

visual indication of the gesture mapping, which means tha t users do not need to 

remember gestures.

1-D O F m enus 1-DOF menus, as suggested by Shaw and Green (1994), are also 

possible using the 5DT data glove. These menus could be implemented using two 

basic techniques. Firstly, the degree of roll or pitch could map directly to the 

menu position. Pitching the glove fully upwards would highlight the topmost

129



6.4. 5DT dataglove: Possible selection techniques
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Menu

Item 4

Item 5
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Item 1

Item 2

Item 3

Item 4

Item 5
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Figure 6.7: Possible 1-DOF selection techniques using the 5DT glove, (a) 
The highlighted menu item is mapped directly to the pitch or roll 
angle, (b) Moving the highlighted section is achieved by pitching 
the glove above or below the neutral zone.

15°
15° Item 1

30° - Item 2 

30° - Item 3

30° - Item 4

15° -Items 15°

Figure 6.8: Direct mapping of angle to menu item. When the pitch or roll 
angle passes the threshold of 120 or 0 degrees (indicated by the 
grey areas), the top and bottom menu items can still be selec­
ted. Thus, the effective range of the glove is increased, allowing 
a greater proportion of the angle to be allocated to internal menu 
items.
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menu item, pitching the glove downwards would select the last menu item, and 

intermediate menu items would be selected by pitching the hand accordingly This 

technique depends on being able to divide the available tilt range of the dataglove 

evenly between menu items, such that sufficient range is assigned to  each menu 

item Here, there is an inherent trade-off between list size and usability, the 

larger the list, the smaller the angle allocated to each menu item, and the finer 

the movement necessary for accurate selection To achieve a list length of 5, we 

divide 120 degrees by 5, which corresponds to an allocation of 24 degrees to each 

item m the list In practice, for 5 item menus, a larger proportion of the 120 

degrees can be allocated to internal menu items As users pass the limit of the 

gloves effective measuring angle (l e more then 120 degrees of movement) the 

tilt sensor continues to indicate the angle is at its limit (0 or 120 degrees) Thus, 

the effective angle of the top and bottom  items is larger then 120 degrees, and 

is m fact closer to 150 (Figure 6 8) In our system, 15 degrees are allocated to 

the top and bottom of lists, with 30 degrees allocated to each of the internal list 

items However, even with 30 degrees allocated to each menu item, the selection 

of items still requires a fine degree of precision Furthermore, the movement of 

the hand when a select gesture is being formed to choose the highlighted menu 

item, can cause the angle of the hand to change, leading to accidental selection of 

neighbouring list items A more formal evaluation of the technique is discussed 

m Section 6 6

The direct selection technique can be used by mapping either the roll or 

pitch of the glove Each has benefits and drawbacks The pitch motion is more 

intuitive, users pitch their hand up to move up the list, and down to move down 

,the list In comparison, rolling the hand inwards and outwards does not map as 

intuitively However, the placement of the tilt sensor on the glove results m pitch 

readings that do not accurately reflect the orientation of the hand (Figure 6 9a) 

As a consequence, larger pitch motions are needed to affect the orientation of the 

sensor (Figure 6 9b) In contrast, the position of the tilt sensor has no effect on

131

i



6 4 5DT dataglove Possible selection techniques

(a) (b)

Figure 6 9 Tilt sensor movement as a user bends their hand Due to the 
position of the sensor (indicated by the white rectangular marker 
at the wrist), pitching the hand at the wrist has little effect Users 
must pitch their arm at the elbow to effect the sensor

the roll sensor Thus, although less intuitive, the roll sensor requires significantly 

less arm motion

An alternative to this direct mapping technique, is to use a neutral zone, 

above or below which the current menu selection moves up or down We shall 

refer to this as a click selection technique, as the concept is similar to that of 

pressing an up or down button The advantage of this is that a greater range 

(40 degrees) can be assigned to each position, and list sizes have no limit The 

downside of this technique, is that selection of objects further down the list takes 

longer, as users must return to the neutral position after each click However, as 

lists can be sorted according to their probability, the need to select distant list 

objects may occur with sufficiently low frequency, as to warrant its use As with 

the direct selection technique, the roll can also be used m place of the pitch for 

the click technique

Each of these techniques is used to highlight items in a menu Once an 

object has been highlighted, it must be selected through the use of a selection 

command The options for selection are either a time-out after an item has been 

selected for a period of time, or selection using a gesture Therefore, selection
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6 5 Interaction techniques for predictive text-entry

using 1-DOF menus will potentially need one motion to highlight an object and 

another to select it Although 1-DOF menus are likely be slower then selection 

with gestures, the advantage of the technique is the reduced gesture set needed 

to select all items

6 5 Interaction techniques for predictive text-entry

Having defined our taxonomy m Section 6 3 and explored the selection techniques 

possible m Section 6 4 we can now create potential interaction techniques for our 

ambiguous text-entry system

6 5 1 Selection of ambiguous keys

Selection involves choosing between 8 possible keys From our taxonomy, we know 

that the selection of keys is comprised of the 3 sub-tasks common to selection 

Indication of key, confirmation of selection, and feedback

Indication of key Each of the three selection techniques discussed in Section 

6 4 can be applied to the selection of ambiguous keys However, the most obvious 

candidate is the mapping of finger flexion gestures to keys This maps closely 

to our interaction with physical keyboards, and allows for the direct selection of 

each of the eight keys with one gesture

Confirmation of selection Unlike the selection of exit from a system menu for 

example, confirmation of our selected key would slow and frustrate users There­

fore, a more plausible solution is to assume automatic confirmation of selection, 

with users correcting any mistakes

Feedback Using a regular keyboard users receive tactile feedback as they strike 

each key When using gestures there may be no such feedback Therefore, aural 

and visual feedback provide useful affirmation of key selection Aural feedback
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confirms that a gesture was recognised, while visual feedback highlighting the 

selected key provides confirmation that the gesture recognised was indeed the 

intended one

Feedback is also necessary to indicate when a gesture, although recognised, 

is not valid As each key is struck, the current sequence of ambiguous keys is 

compared to a dictionary of potential words If no matching words exist, then 

the user has either selected an incorrect key, or is attempting to type a word 

which is not m the dictionary Thus, visual or aural feedback should indicate 

that a gesture was recognised, but that the system dictionary contains no words 

matching the current key sequence

6 5 2 Selection of predicted and complete words

Here, the selection involves picking a word from a list of ambiguous words, or 

choosing to finish an incomplete word from a separate list As with the selection 

of keys, the selection of words is comprised of the 3 sub-tasks common to selec­

tion indication of the desired word, confirmation of selection, and feedback As 

mentioned m Section 6 3 1, any one-handed technique used to select predicted 

words can be mirrored to select ambiguous words

Indication of desired word As with the selection of ambiguous keys each 

of the three selection techniques discussed m Section 6 4 can be applied to the 

selection of predicted and complete words However, unlike ambiguous words, 

the ideal technique is less obvious

On average, the selection of words will only occur every 6th interaction tech­

nique, the average length of a word is five letters, at which point a word will be 

selected Therefore, if speed is to be sacrificed for either technique, it should be 

for word selection Combined with this, the words to be selected do not have the 

same proprieties as the ambiguous keys Specifically, words are ordered according 

to their probability As a result, each item will not be selected with the same
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list position predicted words complete words
1 97 61 49 71
2 1 90 18 42
3 0 30 13 34
4 0 09 10 51
5 0 04 8 03

Table 6 1 Selection percentage of list items for word prediction and word 
completion

frequency Table 6 1 shows the breakdown of words selected from predicted and 

complete lists respectively, where words are ranked according to their probabi­

lity Figures shown reflect selection statistics for an alphabetic keyboard using 

a tri-gram language model trained on 25 million words, however they reflect the 

trend for QWERTY, and optimised keyboards

As we have discussed, 2D selection, although possible with the 5DT glove, is 

unnatural, and thus the least attractive option Similar to key selection, words 

could be mapped directly to finger flexion gestures However, this would require 

a change of mode, to indicate the users intention to switch between selecting keys 

and selecting words A gesture, which didn’t map to any key, for example a fist, 

could be used to indicate this change of mode Another option is to pitch or roll 

the hand to one angle during typing to select keys and to an alternative angle 

to select ambiguous or complete words The benefit of this technique is that all 

words can be selected directly, the drawback of this technique is that two motions 

are needed to select a word

1-DOF menus, offer an attractive alternative 1-DOF menus, unlike mapping 

fingers to words, would not require a mode change If the angle comfortable 

during typing maps to the most likely word on the list, then only the selection 

gesture is needed to select the word If the desired word is not highlighted by 

default, then users can pitch or roll the hand accordingly to highlight the desired 

word, before selecting it This technique is particularly suitable for selection of 

predicted words, where the most likely word is predicted with high frequency
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Confirmation of selection If tulip menus are used, then indication and con­

firmation, like that for keys, become one For 1-DOF menus, confirmation of 

selection is needed to confirm selection of the currently highlighted word through 

the use of a defined gesture or time-out The flexion of the thumbs is a natural 

candidate for the selection gesture, as during typing on a regular keyboard, the 

space-bar is hit with the thumb to indicate the end of a word

Feedback As with key selection, visual and aural feedback is used to com­

pensate for the lack of tactile feedback Visual feedback is used to indicate the 

currently selected word, while aural feedback is used to indicate that the selected 

word has been confirmed as the desired word

6 6 Evaluation of selection techniques.

In Section 6 4 we discussed several options for the selection of items from a list 

using 5DT datagloves To recap, these were

• Direct mapping of the pitch or roll angle of the glove to the highlighted list 

item

• Highlighting a list items using a click up or down motion with either pitch 

or roll

• Mapping the flexion of each finger to a menu item

We conducted an experiment to evaluate the characteristics of each technique 

This evaluation measured the speed, accuracy, and user preference of each selec­

tion technique

6 6 1 Experiment details

Five conditions were tested m our withm-subject experiment Direct mapping 

of both tilt angles to the highlight menu item, click highlighting with both roll
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49

F igure 6.10: Selection experiment

and pitch, and finally mapping each finger to a list item. For this finger mapped 

technique, users rolled their hand outwards (which would correspond to a mode 

change during real use) and then selected the menu item by bending the corre­

sponding finger. This technique was used to simulate how the system would be 

used if combined with a similar technique for selecting letters.

Users were presented with a list, represented by 5 rectangles (Figure 6.10). 

The users were asked to select an item from the list 50 times. The item to be 

selected was indicated by two white circles positioned on either side of the list. 

When the user selected the correct list item, the circles turned green. If the user 

selected an incorrect list item the circles turned red. Regardless of the outcome, 

a new item was indicated for selection. This was repeated 50 times with the 

number of remaining selections indicated at the bottom of the list. The time 

between the indication of the desired list object by the system, and the selection 

of a list item by the user, and the accuracy of selection were recorded.

For the condition in which each finger mapped to a list item, the list was 

coloured red while the hand was in the horizontal typing position. When the user 

rolled their hand 90 degrees outwards, the list turned green indicating that a list 

object could be selected. The user could then bend the finger which mapped to
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the list item After a user had selected an item, they were instructed to return 

their hand to the horizontal position, at which point another desired list item 

was indicated

For the other four conditions, which didn’t require a mode change, four of the 

list items were coloured red, while the list item currently highlighted was coloured 

green Participants highlighted the intended list item and flexed their thumb to 

select it Users were then instructed to return their hand to the horizontal typing 

position, at which point another desired list item was indicated 

The mam hypotheses were

• The techniques directly mapping tilt angle to the selected item, and map­

ping fingers to list items would prove significantly faster then the click 

selection techniques

• The error rates for both click techniques would prove significantly lower 

then the equivalent direct tilt techniques

Participants Eight users participated in the selection experiments, 2 female, 

and 6 male Participants were postgraduate students and staff volunteers from 

the School of Computing

Equipment Participants interacted with the system using 5DT datagloves 

These were calibrated individually for each participant before each recording 

The total range of motion of each finger was measured After calibration, fingers 

were considered flexed if the Euclidean distance to a flex gesture was closer then 

the Euclidean distance to a flat gesture, as described m Chapter 5

Procedure At the beginning of each experiment, each of the five selection tech­

niques was explained and users were given an opportunity to familiarise them­

selves with each technique Users were then tested using each technique Before 

each technique was tested, users were reminded of the technique to be tested
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Test conditions were counterbalanced to avoid any learning effects Users were 

asked to perform as quickly as possible while maintaining as high a degree of 

accuracy as possible

Finally, at the end of the experiment users were asked to rank the five tech­

niques in order of preference

Results Figure 6 11 shows the average selection times recorded from partici­

pants Values indicate the average time taken to select each list item, and the 

overall average selection time for each technique Withm-group one-way ANOVA 

reveals that the selection technique has a significant effect on selection speed 

(F(4 28) — 34 816, p < 0 0005) The graph confirms our hypotheses The finger 

mapping technique, shows the most consistent selection times Here, each list 

item can be selected directly Consequently, there is no difference between the 

time to select the first or last item In contrast to this, the click selection techni­

ques are fast for selecting the middle list item (which is highlighted by default), 

but slower to select items further from the centre Similarly, the direct angle 

mapping techniques are fast for selecting the middle item, slower at selecting the 

1st, 2nd, 4th and 5th items However, m contrast to the click technique there 

is little time difference between the time to select these items Pairwise com­

parisons reveal that average selection times for both click select techniques are 

significantly lower then both the direct tilt and finger mapping techniques (p < 

0 01 after Bonferroni adjustment for multiple comparisons)

Of note is that the selection times for the central list item are faster for 

all tilt techniques, compared to the finger mapping technique This is because 

two gestures are needed to select an item with the finger mapping technique, an 

outwards roll, followed by a finger flexion In contrast, the tilt techniques are 

centred on the central list item by default, so only a select gesture is needed 

Based on this, an adapted, hybrid gesture selection technique is suggested, where 

the hand may remain horizontal to select the top object with the thumb, or roll
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Roll Click Roll Direct Tilt Click TiltDirect Finger mapping

Selection method
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Figure 6.11: Comparison of selection times for the five techniques tested

the hand 90 degrees to the vertical position, and select the other four list items. 

The advantage of this technique will become more apparent when we discuss word 

list frequency.

Figure 6.12 shows the error rates of the five selection techniques tested. Again, 

within-group one-way ANOVA reveals a significant effect of selection technique on 

accuracy (^(4,28) =  7.990, p < 0.0005). The two direct angle mapping techniques 

perform poorly, with average error rates of over 10 percent. T-Tests reveal that 

the error rate for both click techniques is significantly lower then their direct angle 

equivalents. (t = 3.473, df = 7, p = 0.005) and (t = 2.544, df = 7, p = 0.019) 

for roll and pitch techniques respectively.

Our own observations revealed that accuracy was poor for direct angle selec­

tion because users struggled with the fine control of the pitch or roll angle needed 

to highlight a list item. Slight movements in the hand caused the highlighted 

item to flicker. Even when the hand was steadied on the correct item, forming 

the select gesture often caused small movements which altered the highlighted 

item just as it was being selected.

In contrast, larger movements were needed for the click techniques, which, 

although slower, lowered the chance of the highlighted item changing as the user
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Figure 6.12: Comparison of error rates for the five selection techniques tested

Actual

Intended 1 2 3 4 5
1 77 3 0 0 0
2 1 72 7 0 0
3 0 0 79 1 0
4 0 0 0 80 0
5 0 0 0 2 78

Table 6.2: Confusion matrix for finger mapping selection technique

formed the select gesture.

Finally, from observation of experiments, the majority of errors for the finger 

mapping technique appeared to be caused by the mental mapping of the index 

finger to the top item rather than the thumb. Similarly, the second list item 

was selected with the middle finger rather then the thumb. This was supported 

by a confusion matrix contrasting the intended gesture, and the actual gesture 

recorded (Table 6.2).

Figure 6.13, shows the average user preference rankings of all five techniques 

(lower is better). The finger mapping technique was preferred by almost all users. 

Both click techniques were least liked, as, although accurate, they proved slow 

and frustrating for users.

Error rates

Roll Click Roll Direct Tilt Click Tilt Direct

Selection technique

Finger

12 m 3  □  4 ■  5 □  average
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Figure 6.13: Comparison average rankings for the five selection techniques 
tested (techniques were ranked 1-5, thus lower is better)

Roll Click Roll Direct Pitch Click Pitch Direct Finger mapping

User ratings 4.13 3.13 4.00 2.75 1.13
Accuracy 2.75 11.75 3.50 10.50 3.25
Speed 1.67 1.07 1.67 1.10 1.09

Table 6.3: Recap of selection characteristics

Discussion Table 6.3 shows a recap of each of the 5 techniques, comparing 

average selection speed, accuracy, and preference. Based on the results of these 

experiments, mapping finger flexion to menu items would seem the best solution. 

It was the most preferred method, and was fast and accurate. However, the 

experimental conditions did not reflect the menu interaction likely during actual 

use. In particular, the frequency which which menu items were selected did not 

reflect the true likely usage. In the experiments list items were selected at random, 

with users selecting from each position ten times. In reality, word lists are ranked 

according to probability. As a result, certain menu items will be selected with a 

significantly higher frequency then others. Recall from Table 6.1, that for word 

completion, the most likely menu item will be selected with a frequency of almost 

50 percent, while for word prediction, the figure approaches 100 percent.

If we apply this data to the selection times, we find the characteristics of each

Selection Rank

Roll Click Roll Direct Tilt Click Tilt Direct Finger

Selection Type
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F igure 6.14: Comparison of likely selection times for the five techniques tested 
if used on ordered word lists

technique changes. Figure 6.14 and 6.15 show the likely accuracy and speed of 

each technique if used in practice to select predicted and complete words from 

ordered selection lists.

The speed advantage of regular finger mapping is reduced, as the majority 

of selection occurs on the fastest position for all the other techniques (horizontal 

thumb flexion). The click techniques become much more attractive, offering low 

error rates, and high average speed for word prediction. Although not tested, 

the predicted hybrid gesture selection times are estimated. Here, thumb times 

are based on the average selection time for the central list item for both click 

techniques (where selection is performed with the flexion of the thumb when the 

hand is horizontal as proposed in the hybrid finger technique) and the times for 

other fingers are based on those recorded for the regular finger mapping technique.

6.7 Conclusions and recommendations

In this chapter we have discussed interaction techniques for ambiguous text-entry. 

Specifically, we have shown the value of decomposing a larger task into sub-tasks, 

which can in turn be used to choose appropriate interaction techniques. We have 

discussed some of the potential selection techniques which are possible using

i . . Nek  —

■ II Ill
Roll Click Roll Direct Tilt Click Tilt Direct Finger Hybrid finger

mapping mapping

S election techn ique

■  prediction ■  completion
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Figure 6.15: Comparison of likely selection accuracy for the five techniques 
tested if used on ordered word lists

the 5DT dataglove, and, combining these with our taxonomy, suggested several 

options for ambiguous text-entry. Ultimately, the choice of techniques depends 

on several factors. Speed, accuracy and likeability all have an impact on the 

selection of appropriate techniques.

Finally, we conducted experiments to examine the speed, accuracy, and user 

preference of five proposed selection techniques. Based solely on results of our 

experiments, directly mapping finger flexion to list items proves the most attrac­

tive option for list selection. However, when considered in the greater context 

of their use as interaction technique for word selection within our text-entry sys­

tem, word ranking and selection frequency must be taken into account. When 

these are considered, the click techniques and the hybrid finger mapping techni­

que are the most appealing candidates. The final decision may be determined by 

gesture recognition accuracy. If gesture recognition is hampered by sympathetic 

bending, then the click techniques offer the best solution, otherwise, the hybrid 

finger-mapping technique would seem preferable.

Roll Click Roll Direct Tilt Click Tilt Direct Finger mapping

Selection techn ique 

■  prediction ■completion
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Chapter 7

System  evaluation

7 1 In tro d u c tio n

The design of our text-entry technique followed the iterative evolution model 

common m many design methodologies, as outlined m Section 1 4 Formative 

evaluation was used throughout the design to gam greater insight into the sys­

tem, to identify useful features, and finally to detect any potential problems By 

developing early working prototypes, we could evaluate the viability of the un­

derlying text-entry technique This evolving prototype also allowed us to assess 

individual aspects of the system, such as possible interaction techniques and ge­

sture recognition methods Following informal formative tests, we conducted a 

summative evaluation of the system Both quantitative and qualitative analy­

ses was used to compare various aspects of the system Here, features such as 

keyboard configuration, and the use of visual aids, were examined by measuring 

both user performance and preference

In the following chapter we will discuss findings from our informal forma­

tive evaluation conducted during the system design, and our formal summative 

evaluation
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7 2 Formative evaluation

Formative evaluation was conducted during the development of the system This 

allowed insight into usability of the system, and highlighted potential problems 

with it While conducting this informal hallway testing, quantitative data was 

recorded However, more focus was given to qualitative data, where insight was 

gamed from observing users, who were encouraged to think out loud as they 

interacted with the system This gave an insight into any problems users might 

have with the system Users were also encouraged to share any positive aspects 

of the system

7 2 1 Experiment details

The primary objective of early formative experiments was to confirm the poten­

tial of the system as a viable text-entry technique, and to identify any potential 

problems with its use Other objectives included assessing the use of word com­

pletion as an aid to increase throughput, and to examine possible alternative 

keyboard layouts and interaction techniques The gesture needed to signify a 

key-press wearing the datagloves was significantly larger, and more pronounced 

than that needed on a regular keyboard Therefore, it was hypothesised that the 

interaction with the virtual system would be sufficiently foreign as to reduce the 

effects of muscle memory, thereby resulting in poor performance of the QWERTY 

keyboard layout It was further hypothesised that alternative keyboards, such as 

those designed for easy searching, or optimised for prediction accuracy might offer 

potential gams over the QWERTY keyboard layout

Participants Five users participated m the first evaluation of the system, 3 

male, and 2 female All participants were computer science postgraduate stu­

dents, and where thus very familiar with a QWERTY keyboard layout Short 

typing tests on a standard keyboard revealed that participants had a regular
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text-entry speed ranging from 25 to 43 WPM

Equipment Participants interacted with the system using 5DT datagloves 

These were calibrated individually for each participant before each recording 

The total range of motion of each finger was measured After calibration, flexion 

greater then 60 percent of the overall range was considered flexed while anything 

less then 50 percent was considered extended

The prediction engine used a dictionary of the most frequent 2000 words of 

the Brown corpus, with words ranked according to their frequency Any words 

appearing m the test text which were not originally m the 2000 word dictionary 

were added before the test

Procedure Users were shown a visual representation of the virtual keyboard, 

(Figure 7 1), and the ambiguous nature of the finger-to-key mapping was explai­

ned Due to its availability on most mobile phones, all five participants were 

familiar with the concept of predictive spelling on ambiguous keyboards Ho­

wever, only 3 participants actually used the feature on their own phones Users 

were shown how to interact with the system, how to select predicted and complete 

words, and how to delete incorrect words and letters using fist gestures

Two withm-subject variables were used for the tests Firstly, keyboard lay­

out was changed QWERTY, alphabetic, and optimised keyboards were tested 

The second variable was the ability to use word completion, which was either 

active or inactive Each user participated m six two-mmute tests, three tests 

with each keyboard without word completion, and three tests with it The six 

conditions were counterbalanced to offset any learning effects User’s text-entry 

times, and the number of letters saved by word completion were logged by the 

system Throughout the procedure, users were asked to think out loud to articu­

late any problems they identified m the system Users were observed throughout 

the procedure to evaluate the performance of the system, and to monitor errors
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Figure 7 1 Virtual ambiguous keyboard

made by the users or the system

Finally, having completed each of the 6 conditions, users were asked to briefly 

evaluate and comment on alternative selection techniques During the tests, 

users selected letters with the direct mapping of the roll angle of the glove to 

the highlighted item, as described m Chapter 6 After the experiment, users 

were shown the iterative, click selection technique, which was proposed as an 

alternative to the direct selection technique, and asked to compare them

Results and observations The primary objective of the initial tests was to 

confirm the potential of the text-entry technique The positive response from 

users, and the recorded text-entry times confirmed the viability of the predictive 

text-entry technique On average, users typed at a speed of 9 WPM during the 

sixth test, which corresponded to ten minutes practice Users found the concept 

easy to understand, and were quick to begin typing

Also of primary concern during the evaluation, was the identification of any 

potential problems During the initial design of the prototype system, informal 

testing had been conducted by the author However, the larger user group quickly
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identified gesture recognition as a key factor m the accurate use of the system 

In particular, users found that the system repeatedly mis-mterpreted a little fin­

ger key-press as a ring key-press This was due to sympathetic bending of the 

ring finger when the little finger was bent The problem was further exaggerated 

for the two female subjects, whose smaller hands resulted m poor recognition 

This was primarily due to the nature of the dataglove’s one size fits many de­

sign These recognition problems represented the greatest source of frustration 

for participants

Another problem which became evident during testing was simple user error 

Even when the system’s gesture recognition performed accurately, users often 

simply pressed the wrong finger After searching for and finding the desired letter, 

users frequently depressed the wrong finger, not through lack of concentration, 

but by simply confusing the finger-to-key mapping Observation of this recurring 

phenomenon, combined with user feedback, offered insight to its cause Users felt 

the most likely cause of the problem was due to the way m which they mentally 

mapped their fingers to the columns Users regularly viewed the index finger 

column as the first column, and as a result, bent the first digit on their hand, 

the thumb, to select it Similarly, the second column was often selected with 

the index rather then middle finger However, unlike recognition errors, which 

were more likely to go unnoticed, users quickly recognised their mistake and 

deleted the unintended letter Isolating the reason for this problem is difficult, as 

software cannot determine the difference between a selection error by the user, 

and a recognition error by the system The only reliable method of detection is if 

participants give an aural cue to an observer while being tested, to indicate that 

they were at error rather then the system

Secondary objectives of the experiments included evaluating alternative key­

board layouts, and the potential use of word completion Here, analysis of quan­

titative data recorded during the experiments revealed that no keyboard perfor­

med significantly better then others The QWERTY layout resulted in the fastest
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text-entry time (14 WPM), and on average resulted m higher WPM rates then 

alphabetic and optimised layouts However, as expected, users -  even those that 

were comfortable touch typists -  were forced to visually hunt for keys, as the 

muscle memory, which aided m regular typing, had little effect

Also examined was the potential advantage offered by word completion Here 

the quantitative results were more conclusive The use of of word completion 

significantly improved text-entry rates On average, users saved 20 percent of 

characters, increasing WPM by over 30 percent, through the use of word comple­

tion However, there was a further advantage of word completion which was not 

foreseen Throughout the experiment, the focus of users was often broken This 

occurred for several reasons Users became frustrated if they could not locate 

a letter on the keyboard, or if the system failed to instantly recognise an inten­

ded gesture, or if it mis-classified a gesture This resulted in users occasionally 

becoming lost m longer words, unsure of how many letters they had typed and 

which letter to type next Because of the ambiguous nature of the system, while 

typing longer words, the beginning of a sequence regularly matched alternative 

full words Consequently, if users momentarily lost focus, they could not quickly 

see which letter they were on They had to count the letters m the current offe­

red word, and then count the corresponding distance into the required word, to 

determine which letter they should type next For longer words this was quite dif­

ficult and frustrating Often, users simply gave up, deleted the word, and began 

typing afresh The ability to complete words significantly reduced this problem 

as word completion offered a method to quickly finish longer words, essentially 

circumventing the problem For this reason, as much as any perceived increase 

m efficiency, users expressed a strong preference to the use of word completion 

When comparing the iterative click selection technique to the direct mapping 

technique, all five participants tested preferred the direct mapping technique, 

feeling the iterative technique was too slow m comparison

During the tests, users were able to delete incorrect characters or whole words
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using two delete gestures Creating a fist with the left hand deleted the entire 

word, while creating a fist with the right hand deleted the last typed character 

It quickly became apparent that this mapping confused users, who could not 

remember which hand mapped to which function This resulted m unnecessary 

deletion of almost complete words when a user, attempting to delete an incorrect 

character, deleted an entire word by creating the delete gesture with the wrong 

hand

7 2 2 C onclusions

The results from initial formative testing confirmed the viability of predictive 

text-entry as a text-entry technique that was both efficient, and easily understood 

and adopted Users quickly grasped the basic concept and could begin typing 

immediately The tests also identified problems which simple task analysis did 

not specifically, the accurate recognition of key-press gestures This was due m 

part to the physical characteristics of the glove, and m part to the dexterity of 

individual users

The tests demonstrated clearly the benefits of word completion, both m terms 

of overall throughput, but also as a method for reducing the likelihood of user 

frustration as they become lost while typing long words

The results of varying keyboard layout, although not statistically significant 

were telling Although all participants were computer science postgraduate stu­

dents, intimately familiar with the QWERTY keyboard layout, users did not 

instinctively know where letters resided on the keyboard, and had to resort to 

the hunt and peck style typing of novice typists This is m line with findings 

by Bowman et al (2001b), and reaffirms our view that potential gams can be 

achieved from alternative keyboard layouts

Finally, the use of a small 2000 word dictionary resulted m relatively few 

clashes during text-entry This was of most benefit to the QWERTY layout, 

whose unbalanced keyboard layout might ordinarily have resulted m a higher
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clash rate With a larger dictionary the value of optimised keyboards may have 

been more apparent

7 3 Sum m ative evaluation

As the system evolved, a more thorough, systematic evaluation of key aspects 

of the system was undertaken This summative evaluation was carried out to 

contrast the effectiveness of several variations of the system As with the forma­

tive evaluations, quantitative and qualitative data was recorded However, m the 

summative evaluation, a more formal approach was taken to experiments A lar­

ger group of participants was used (49), allowing for more statistically significant 

results Users participated m longer experiments (40 minutes), were required 

to contrast subjective workload during the tests, and complete a post-hoc ques­

tionnaire afterward

For these tests, several aspects of the system were examined firstly, keyboard 

layout, secondly, keyboard size and finally the effect of the use of visual aids 

Among the key questions explored were

1 Is there any effect m altering the keyboard layout from that of a universally 

recognised QWERTY to an alternative layout designed for faster searching 

or more accurate prediction7
»

2 Does the addition of visual aids simplify the mental one-to-one mapping of 

fingers to columns of letters?

3 Does the reduction of key count from eight to six keys adversely effect the 

typing speed7

4 What is the average speed of beginners using the system for the first time, 

and is there any correlation between users typing speed and their speed on 

a regular keyboard7
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7 3 1 E xp erim en t deta ils

Two separate experiments were conducted, with users participating m one or the 

other Participants were allocated to each one based on the ability of the system 

to clearly identify intended gestures Users with strong sympathetic bending of 

the little finger which could not be resolved by the system were allocated to the 

first experiment

In the first experiment a keyboard layout comparison was conducted Here, 

four keyboard layouts were contrasted with within-subject tests a traditional 

QWERTY layout, an alphabetic layout, an optimised layout and a random lay­

out Key-count was also contrasted m the first experiment, users with strong 

sympathetic bending m the little fingers were tested with six-key keyboards, 

where the little and ring finger corresponded to the same gesture Users without 

sympathetic bending were tested on full eight-key keyboards

The second experiment compared key-count with withm-subject tests Here 

participants were limited to those without sympathetic bending Also tested 

was the potential advantage of visual aids to reduce selection problems The 

visual aid used was a graphical representation of the user’s fingers behind the 

keyboard (Figure 7 2) This was used in an attempt to reinforce the column-to- 

finger mapping The aim here was to reduce the user errors caused by flexing the 

wrong finger to select a key

P a r t ic ip a n ts  Forty-one users participated m the summative evaluation of the 

system, 27 male, and 14 female All participants were students completing taught 

postgraduate studies m the School of Computing Students participated m the 

experiments as part completion of practical work for their HCI module and re­

ceived credit accordingly

Equipm ent As with formative studies, users interacted with the system using 

5DT datagloves These were calibrated for each individual user before each recor-
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F igure 7.2: Graphical representation of gloves to aid proprioception

ding. The total range of motion of each finger was measured. After calibration, 

flexion greater then 60 percent of the overall range was considered flexed while 

anything less then 50 percent was considered extended. 1

A tri-gram language model was used based on a 500,000 word corpus of books 

collected from the Project Gutenburg online collection of electronic texts (Gu- 

tenburg, 1971). This resulted in a dictionary of 15665 words, with over 400000 

tri-grams.

Initial procedure At the beginning of each test users were asked to complete 

a brief test to measure their typing speed on a standard keyboard. Following this, 

participants put on, and calibrated the gloves. At this point, users were evaluated 

for test suitability. As detailed previously, the one size fits many nature of the 

gloves occasionally resulted in difficulties in recognition, particularly with female 

users with slight hands. If this evaluation indicated the presence of sympathetic 

bending of the little fingers, users were allocated to the first test, using the six­

fingered keyboard. Otherwise users were evenly allocated to either the first or 

second tests. Of forty-nine potential participants, eight were deemed unsuitable

1Due to timetable constrains, the summative evaluation was completed concurrently with 
the gesture recognition experiments. Thus, the recommendations offered in Chapter 5 had not 
been implemented in the system at this point. However, the design of the tests, using six- and 
eight-finger keyboards, circumvented many of the problems caused by sympathetic bending.
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due to incompatibilities with the datagloves Twenty-five users participated m 

the first experiment nine using six-column keyboard layouts and sixteen using 

eight-column layouts Sixteen users completed the second experiment

Subjective workload During the experiment users rated their experiences 

using a NASA-TLX (Task Load Index) rating system developed by Hart and 

Staveland (1988) The NASA-TLX system contrasted the subjective workload 

experienced by the participants under the various four conditions Participants 

were asked to rate the system according to six metrics mental demand, physical 

demand, temporal demand, performance, effort, and frustration level Bach user 

rated the system four times, once after each condition

Post-hoc questionnaire Finally, participants were required to fill in a post- 

hoc questionnaire In it, they were asked to rate the four conditions in order of 

preference, and to make any further comments on the system

Experiment 1 keyboard layout and key count

Participants were presented with the virtual keyboard and the text-entry techni­

que was explained This included explaining the nature of the dictionary-based 

ambiguous text entry how disambiguation was done not at the letter level, but 

rather at the word level Participants were told not to attempt to disambiguate 

individual letters as they typed, but rather to wait until they finished typing a 

word Selection of ambiguous words was explained as well as how to finish a 

word using word completion Finally, the delete gesture (a fist) was demonstra­

ted Unlike m previous experiments, a fist gesture with either hand only deleted 

one letter

Users were then encouraged to become comfortable with the system and to try 

each of the demonstrated features A period of roughly five minutes was allocated 

for user orientation and practice Users trained on a random keyboard which was
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only used for the duration of training This was to counter any learning effects 

which might bias other layouts

Once participants were comfortable with the use of the system, they com­

pleted four five-minute tests, one test for each keyboard layout Users typed 

short sentences designed to be read once and easily remembered (MacKenzie and 

Soukoreff, 2003) To counter the effects of learning, keyboard order was counter­

balanced using balanced Latm squares (MacKenzie, 2002)

The mam hypotheses of the experiment were

• The lack of muscle memory transfer from traditional keyboards would force 

users to search the unstructured QWERTY layout for each key Conse­

quently, alphabetic keyboards, with their structured layout would prove 

easier to type on (reflected by a higher WPM), and would be preferred by 

users

• Due to is accurate predictions the optimised keyboard layout, equally as 

foreign as the QWERTY, should result m a higher WPM then QWERTY, 

and be favoured by users

• Subjective workload would reflect the difficulty in searching for letters, and 

selecting words Thus, alphabetic keyboards would offer the lowest ratings, 

followed by optimised, QWERTY, and finally random

Experiment 2 keyboard size and visual aids

Participants allocated to experiment 2 were familiarised with the system in the 

same manner as those m experiment 1, with each user being given 5 minutes 

training before beginning the tests Users were tested with six- and eight-key 

keyboards, with and without visual aids Again, as with experiment 1, the four 

tests were counterbalanced using balanced Latm squares 

The mam hypotheses of experiment 2 were
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• The visual aids would reduce key selection errors, and thus increase WPM.

• The reduction in errors would be reflected in the subjective workload. In 

particular, mental workload, effort, and frustration should be decreased in 

the conditions were the visual aids are used.

• Eight key keyboards would produce a higher average WPM, as the decreased 

ambiguity would lead to more accurate word prediction.

7.3.2 E x p e rim en t resu lts  
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Figure 7.3: Contrast in user WPM with various keyboard layouts

K e y b o a rd  c o m p a r is o n  Figure 7.3 shows a graph comparing the average WPM 

of all 4 keyboards. Within-subject one-way ANOVA reveals a significant effect 

of keyboard layout on performance (F ^ 72) — 3.832, p =  0.013), and confirms 

our hypothesis that the QWERTY layout would prove sub-optimal. Post-hoc in­

spection reveals that this is due to the alphabetic keyboard, which is significantly

alphabetic QWERTY optimised random

Keyboard
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F igure 7.4: Contrast in participant subjective workload with alternative key­
board layouts

faster then both the optimum and random keyboards (p = 0.029 and p = 0.014 

respectively, using the Bonferroni adjustment for multiple comparisons).

S u b je c t iv e  w o rk lo a d  Figure 7.4 shows the average subjective workload of 

users for the 4 keyboard layouts. The alphabetic keyboard shows the highest 

perceived performance, and has the lowest frustration and effort levels. Alt­

hough not statistically significant, the visible trend is carried across the range of 

workload measures.

U s e r  p re fe re n c e  When asked to rank keyboards in order of preference, over 

50 percent of participants ranked the alphabetic keyboard first (Table 7.1). A 

Friedman test for significance revealed a significant effect of keyboard on user 

preference (%2 =  11.976, df = 3, p =  0.007) . This was in keeping with the 

subjective workload indicated with each keyboard layout, and the resulting text- 

entry rate.

■  QWERTY

□  optimal

■  alphabetic

□  random
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Ranks
Mean Rank

Alphabetic 1 88
QWERTY 2 28
Optimised 2 84
Random 3 00

Table 7 1 Friedman test on user keyboard preference

eight fingers six fingers
with v/aids without v/aids with v/aids without v/aids

10 6 11 5

Table 7 2 User preference for visual aids for 6 and 8 finger keyboards 

E x p e r im e n t  2

V isu a l a id s  The effects of the visual aids on selection accuracy proved incon­

clusive As selection mistakes could not be measured directly, the effect was 

measured by observing the text-entry rate of users Users expressed a mixed re­

action to the aids, some found them useful, while others found them distracting 

This was reflected m the WPM observed, which showed no significant difference 

between typing speed with or without the use of gloves as selection aids

A post-hoc questionnaire of user preferences (Table 7 2) revealed that, despite 

the fact that it did not improve their typing speed, users preferred the use of visual 

aids for both six- and eight-fingered keyboards The NASA-TLX results (Figure 

7 5) proved inconclusive and at times contradictory Visual aids had no significant 

effect in reducing user perceived workload

C o n tr a s t in g  s ix -  a n d  e ig h t-f in g e r  k e y b o a r d s  Analysis of user text-entry 

speed with six- and eight-finger keyboards revealed no significant difference m 

WPM Users typed with an average speed of 5 7 and 5 9 WPM with six- and 

eight-fingered keyboards respectively Our post-hoc questionnaire revealed an al­

most even split between user preference Again, NASA-TLX results were mcon-
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■ 6 fingers w ith v/aids

□  8 fingers w ith v/aids

■ 6 fingers w ithout v/aids

□  8 fingers w ithout v/aids

MD - Mental demand OP - Own performance

PD - Physical demand FR - Frustration

TD - Temporal demand EF - Effort

F igure 7.5: Subjective workload varying keyboard size and the use of visual 
aids

elusive, essentially mirroring user preference and observed WPM. No significant 

difference in workload was perceived as participants switched between six- and 

eight-fingered keyboards.

Experim ent Results: Discussion

K eyboard layout The most significant result from the experiments was the 

effect of keyboard layout on text-entry speed. Although performance using an 

alphabetic keyboard was not significantly better then QWERTY, it was signifi­

cantly quicker than optimised and random keyboards, while QWERTY was not. 

The fact that QWERTY was not fastest is a significant result in itself. Although 

this contradicts research by Norman and Fisher (1982) on standard keyboards, 

it is in keeping with more recent research by Smith and Zhai (2001) on soft key­

boards. All participants in the experiments were computer science postgraduate 

students, and were thus quite familiar with the QWERTY keyboard layout. Ho­

wever, the movement required to select keys seems to have proved foreign enough 

to eliminate any muscle memory which may have developed while typing on 

standard keyboards. This resulted in the need to search for each key, on what
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essentially became an almost random keyboard The alphabetic layout, with its 

structured layout, proved optimal m terms of recorded WPM, but was also signifi­

cantly preferred over all other keyboards tested The recent explosion of the SMS 

text messaging phenomenon m Europe may partly explain this Users send text 

messages on an alphabetic layout, similar to that used m our system, are thus 

somewhat familiar with the alphabetic layout presented This, combined with 

the higher accuracy offered by the alphabetic keyboard, make it an attractive 

alternative to the QWERTY layout

Interestingly, several users commented that they felt the structured nature of 

the alphabetic keyboard actually reduced ease of learning With an unstructured 

layout, users made a conscious effort to learn the location of keys as they found 

and typed them However, with the alphabetic keyboard, this seemed not to 

occur, users simply mentally recited the alphabet if they couldn’t find a letter, 

pressed it, and continued Thus, although an alphabetic keyboard may be initially 

advantageous for the beginner, a QWERTY may prove more beneficial for more 

continued use

Key count The lack of any significant effect of reducing key count, from eight 

to six columns, can most likely be attributed to the accurate prediction of the 

language model, and the levelling effects of the selection technique As discussed 

m Chapter 4, the effect of the language modelling, combined with a selection list 

of 5 words, is to decrease the influence of keyboard layout on prediction accuracy 

Thus, the potential increase m ambiguity caused by reducing the key count does 

not have a significant effect on the accuracy of word prediction

Chapter 5 discussed the use of Euclidean distance to reduce the effect of 

sympathetic bending However, users with strong sympathetic bending will still 

cause occasional often frustrating errors One solution to this problem is to tram 

the system to recognise the individual characteristics and idiosyncrasies specific 

to each user However, this requires training time, which may not be acceptable
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m all situations Our results show that a more attractive option is to simply 

reduce the key count Users with strong sympathetic bending can use reduced 

keyboards, without any significant effect of typing speed

W ord selection technique Although not specifically tested in our experi­

ments, it became clear from observations that the selection technique employed 

had a significant effect on the use of the system

The selection technique employed, which was preferred by users m previous 

formative experiments, was a direct mapping between the roll angle of the wrist 

and the highlighted word The list was ordered according to likelihood, with the 

most likely word placed at the top, mapping to the prone position, and alternate 

words selected by rolling the hand mward This technique allows users to both 

type, and select the most likely word, with their hands m the most ergonomically 

correct and comfortable typing position However, our tests revealed that despite 

the fact that pronation (the mward rotation of the wrists) was not necessary, 

and was m fact less comfortable, users preferred this position, as it reflected the 

typing position they were familiar with The effect of this however, was that 

the angle of the wrist corresponded to the third word m the list rather then the 

first As a consequence, users were forced to rotate their hand back to the prone 

position in order to select the most likely word

As a result, we feel that the list order should be altered, optimising them for 

selection speed according to likely usage By placing the most likely word m the 

middle of the list, and highlighting it by default, selection speed should increase 

Re-ordermg the list m this manner is particularly advantageous for the click 

selection techniques as the second and third most likely words can be selected 

with just one click (Figure 7 6) Similarly, the the fifth word can be selected 

with two clicks rather then four Naturally, re-ordermg the list m this manner 

impacts upon the recommended list length for tilt selection Recall from Table 

4 6 (Page 101) that list lengths greater then two were sub-optimal for iterative
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Up

Neutral

Down

F igure 7.6: Proposed word selection technique

Keyboard Completion list length
1 3 5

QWERTY 16.74 18.42 16.83
Alphabetic 17.09 18.97 17.48
Optimised 17.71 19.81 18.49

Table 7.3: Percentage of characters saved with revised, re-ordered list with 
iterative selection.

click selection techniques. However, when lists are re-ordered in the proposed 

method, lists length of three become optimum (Table 7.3).

V isual Aids Although liked by participants, visual aids had no effect on typing 

speed. The need to measure WPM to assess the reduction of selection errors is 

due to the problem of uniquely identifying the selection errors as distinct from 

gesture recognition errors. Measuring WPM as a measure of accuracy is based 

on the assumption that reduced selection errors, with a corresponding reduction 

in the time to delete incorrect selections and select the correct key, would have a 

positive effect on overall WPM. The assumption is perhaps a weak one. Howe­

ver, the effectiveness of the visual aids, or lack thereof, might partly be explained 

by one participant’s description of the selection problem. They explained that 

having identified the correct letter, and, helped by the visual aids, having deter­

Menu

4th

2nd

1st

3rd

5th
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7 3 Summative evaluation

mined the correct finger to press, they nevertheless still occasionally pressed the 

wrong finger They likened it to the children’s game where flexing interlocked 

fingers became difficult if the hands were first crossed, children can see the finger 

they wish to bend, but often bend the finger of the wrong hand Similarly, the 

participant explained, the graphical representation helped identify which finger to 

bend, but nevertheless they still occasionally bent the wrong one Consequently, 

the errors may be inherent to the direct selection of columns with fingers

Word Completion As with previous experiments, word completion proved 

well liked, and well used On average the use of word completion saved users 

from typing 25 percent of the required test text Fazly (2002) proposed word 

completion systems could predict with higher accuracy if words were never offered 

more then once Fazly suggested that if users did not select a complete word 

from the list of potential words, it could be assumed that none of the words 

were correct, and they could be discarded, this frees up spaces on the list for 

subsequent predictions, thus improving accuracy Although not quantitatively 

tested through software, our own observations revealed that this would not be 

prudent, as users often typed groups or runs of letters before checking the word 

completion list Users regularly ignored the word completion list until they had 

typed sufficient characters, such that there was a high likelihood that the word 

would appear on the completion list

Typing speed All participants completed a short typing test on a standard 

keyboard at the beginning of the trail Tests revealed that there was no signifi­

cant correlation between standard typing speed and that observed on our virtual 

keyboard Although the two fastest typists, with rates of over 50 WPM on a 

regular keyboard, produced the fastest typing times with the virtual keyboard, 

reaching 11 WPM, this trend did not hold for the majority of users Motivation is 

likely to have been a key factor here, as some users were keen to perform well, and
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Sub-test

— Experiment 1 — Experiment  2

F igure 7.7: Increase in average WPM as experiments progress

reach the end of the test before the alloted time, while others were less interested.

Regardless of enthusiasm, there was a steady increase in typing speed throug­

hout each experiment, as users became more familiar with the technique, and 

became more accustomed to the typing gestures needed to type accurately. In 

both experiment 1 and 2, this increase was clearly visible (Figure 7.7), despite 

the fact that in experiment 1, users were using various keyboards throughout the 

course of the experiment.

Subjective workload We feel the subtle changes of the NASA-TLX rating 

experiments may have provided more significant results. Specifically, slight va­

riation in the presentation of the questionnaire, which allowed users to contrast 

ratings for other keyboards or techniques, would allow for a better comparison 

by participants. For our experiments, users filled out a sheet detailing rating of 

the subjective workload experienced (Appendix A). One page was allocated for 

each of the four conditions in both experiments. As a result, users were given 

no frame of reference with which to compare second and subsequent conditions. 

Some participants tried to look at previous ratings, but as they were wearing the
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datagloves while filling out the subjective rating, turning pages proved difficult 

We believe that more consistent and significant results would have been evident 

if all four conditions of the experiments were rated on just one page, where users 

could make a better contrast between the variations m the system We feel this 

is an important factor, as participants are essentially performing the same task 

m each test, with only slight variations made m each instance As a consequence, 

there is a clear improvement m typing speed regardless of these changes, as shown 

in Figure 7 7 This clearly indicates user learning, which is likely to result m a 

reduced perceived workload Without a reference, indicating the workload expe­

rienced during previous sessions, users are likely to assign lower workload ratings 

as the experiment progresses, irrespective of the small changes made m each con­

dition Counterbalancing will help reduce the learning effect, however, as the 

majority of the subjective workload is likely to be as a result of the technique 

itself rather then the changes made throughout the experiments The effect is 

that the results are somewhat diluted

7.4 Conclusions and recommendations

The design of our text-entry technique followed the iterative evolution model 

discussed in Section 1 4 Although computerised quantitative analysis was used 

to evaluate certain aspects of the system -  such as the effectiveness of language 

models, or keyboard layout accuracy -  for many aspects of the system, user 

evaluations were necessary

Using continuous formative evolution, greater insight is gained into the requi­

rements, and potential problems, central to the use of the system Formative user 

evaluation helped identify the recognition of key-press gestures, particularly those 

of the little fingers, as a difficult problem crucial to the comfortable use of the 

system It highlighted the benefits of word completion, and provided encouraging 

results regarding the usability, and ease of learning of the central technique
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Our larger summative evaluation provided a more detailed insight into the 

finer points of the system Most significant here was the effect of keyboard layout 

on text-entry speed Here we found a alphabetic keyboard provided the highest 

text-entry rate Over 50% of users also ranked the alphabetic keyboard first 

among those tested The tests also showed that reducing the key count from eight 

to six had no effect on the text-entry speed of participants Thus, six-fingered 

keyboards are an attractive option for users with strong sympathetic bending 

The use of visual aids to improve key selection accuracy was liked by many but 

also disliked by other users, and, as it provided no significant difference m text- 

entry speed, should at best be optional for any text-entry technique Finally, our 

tests revealed that the minor variations m the interaction technique used to select 

words can have significant effects on the efficiency of selection The benefits of 

ordered lists are compromised if user’s choice of hand position results in the third 

most likely word being highlighted by default Thus, although the fundamental 

design of the interaction technique may remain fixed, minor adjustments should 

be possible based on user preferences
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Chapter 8

Conclusions and future work

8 1 Conclusions and guidelines

This thesis presented the design, implementation and evaluation of a predic­

tive text-entry technique for immersive environments The technique combined 

datagloves, a graphically represented keyboard, and a predictive spelling para­

digm to produce an effective text-entry solution which can easily be incorporated 

into immersive environments Having discussed the underlying design, it iden­

tified four mam factors affecting the use of such a technique keyboard layout, 

prediction accuracy, gesture recognition, and interaction techniques Chapter 3 

examined optimised keyboard layouts, developing a keyboard design to minimise 

ambiguity while typing Chapter 4 examined the effect of language modelling on 

word prediction and word completion accuracy In C hapter 5 we examined the 

gesture recognition techniques suitable for identifying key-press postures Inter­

action with the proposed ambiguous virtual keyboard was considered m Chapter 

6 Finally, we conducted empirical experiments to examine the effects of keyboard 

layout and size, and the use of visual aids to improve text-entry rates, the results 

of which are discussed m Chapter 7 Our research resulted m a large body of 

results pertaining to the performance of various aspects of the system These are 

now reviewed and offered as a set of recommendations for the use of predictive
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text-entry m immersive environments 

Gesture recognition

Central to the use of a virtual keyboard accessed with datagloves, is the accurate 

recognition of key-press postures Sympathetic bending and the one size fits many 

nature of the 5DT dataglove -  used throughout the course of our experiments -  

represent the greatest problems for the design for a gesture recognition system 

that requires no training Misclassification errors represent the most significant 

problem for ambiguous text-entry, as they are the most difficult to identify by 

the user, false-negative and false-positive errors can be identified through aural 

feedback, however, misclassification errors are usually only recognised when the 

system fails to predict the correct word Because of this, the use of a hybrid Eucli­

dean distance technique is recommended for the accurate recognition of key-press 

postures Such a technique only recognises postures once a finger is flexed past 

a predefined threshold, and uses Euclidean distance to determine the intended 

key-press when sympathetic bending causes more then one potential posture to 

be identified In addition, measuring finger speed is recommended to eliminate 

misclassification of transition errors, particularly for larger posture sets

Interaction techniques

Deconstruction of the task of ambiguous text-entry reveals two core selection 

tasks selection of ambiguous keys, and selection of ambiguous words In contrast 

to the selection of keys, which is ideally suited to a direct mapping with fingers, 

the ideal method for word selection is less obvious Of the selection techniques 

tested, both click techniques proved most appealing due to their accuracy In 

addition, the click techniques do not need a change of mode to select words 

However, during our experiments click techniques were the least liked by users 

Finally, the proposed, but untested, hybrid finger mapping technique offers an 

attractive alternative, as the direct selection style was preferred by users, and the
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technique is not dependent on an accurate word prediction 

Prediction accuracy

Higher-order language modelling offers significant improvements over the tradi­

tional um-gram prediction typically found on most mobile phones A 30 percent 

reduction m errors is possible with a tri-gram model given a sufficiently large 

training corpus Increasing the training size of the language model, and the re­

sulting increased dictionary has only slight negative effects on prediction accuracy 

for um-gram prediction, but significantly improves higher-order models Finally, 

word completion offers a significant savings opportunity, savings of 30 percent 

can be achieved with a tri-gram language model with a training size of 25 million 

words Significantly, the selection technique used has an impact on the perfor­

mance of word completion If iterative selection techniques, such as the click 

select method, are used, the word completion lists should be shorter, with lists 

of 2 or 3 optimum depending on the list ordering Finally, the greatest benefit of 

word completion is not the amount of letters saved, but rather that, m allowing 

users to quickly complete longer words, they are less likely to get lost due to the 

changeable nature key sequence interpretation Thus, particularly for beginners, 

word completion is recommended

Keyboard layout

The choice of keyboard layout represents perhaps the most flexible aspect of the 

predictive text-entry system, and is likely to be the most subjective Due to its 

heavy index finger bias, the universal QWERTY keyboard is not an ideal can­

didate for ambiguous text-entry Coupled with this, the lack of muscle memory 

transfer when using datagloves reduces even competent typists to the hunt and 

peck style of typing One alternative is to create a keyboard layout which mini­

mises ambiguity while typing Our experiments revealed that optimal minimum 

ambiguity layouts can be created using co-occurrence bi-gram data However,
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such keyboards are initially quite foreign, and the benefits afforded by their lay­

out are significantly reduced by higher-order language modelling and the use of 

increased prediction list lengths with direct selection techniques Their use seems 

unlikely to be warranted unless a um-gram language model is used for prediction 

An alphabetic layout, m contrast, offers considerable appealing features Its uni­

form letter allocation results in a higher prediction accuracy then QWERTY and 

it is easier to search than seemingly random alternatives such as QWERTY and 

optimised keyboards Our summative evaluation revealed that, on average, an 

alphabetic keyboard resulted m the fastest text-entry times However, both of 

the fastest individual recorded times were on QWERTY keyboards Finally, m 

cases of strong sympathetic bending, six finger keyboard layouts are recommend 

as they displayed no negative impact on typing speed Ultimately the decision 

should be left to the user Beginners are likely to prefer and preform better with 

an alphabetic layout, and we believe this should be offered by default However, 

experienced typists may dislike such a layout Accordingly, the QWERTY should 

be available as an alternative Only users expecting to reach expert level, who 

are prepared to learn a new foreign layout, are likely to experience any benefit 

from an optimised keyboard

8 2 Future work

Like many research projects, the work carried out m this thesis has raised more 

questions then it has answered This thesis has focussed on the problems which 

we believe are central to the effective use of predictive text-entry m immersive 

environments prediction accuracy, gesture recognition, keyboard layout, and 

interaction techniques In researching all four topics we have sacrificed depth 

for breadth, and any of the four core areas could be the subject of considerable 

further research
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Gesture recognition In exploring gesture recognition, we believe that the use 

of language modelling statistics would offer valuable information and would prove 

a useful augmentation The use of bi-gram statistics to identify typing errors is 

certainly not a new concept, and was proposed over 20 years ago by Ullmann 

(1977) Currently, applications such as Microsoft Word detect typing errors after 

keyboard keys are struck Common transposition errors - e g  typing hte ins­

tead of the -  are corrected automatically without any user intervention This 

technique could equally be applied to gesture recognition Sympathetic bending 

can lead to uncertainly as to which key was intended by the user However, bi­

gram information could be used as a parameter m such situations were a similar 

Euclidean distance to two possible gestures indicated that both were likely The 

effect of such corrections would be a reduction m misclassification errors, which, 

as discussed previously, are the most difficult for the user to identify

Interaction techniques In discussing interaction techniques we have focussed 

solely on the core task of text-entry However, to be truly useful, more complex 

symbolic input would be necessary, as would the entry of unambiguous words 

Mode changes, increased layouts, greater DOF would all provide rich grounds 

for future research Our own research focussed on the techniques possible with 

the 5DT dataglove Because of its limited tracking abilities, more advanced in­

teraction -  such as editing previously typed words or adding markup such as 

bold or italics -  is unlikely to be possible without convoluted, unintuitive inter­

action techniques A richer set of interaction techniques would be achievable if 

3D spatial trackers were employed

Prediction accuracy Examining prediction accuracy, we have focussed solely 

on language modelling techniques Language modelling was used as it is ideally 

suited to the relatively unmflected English language, and is already used m a limi­

ted form m modern mobile phones However, as discussed m Chapter 2, a variety
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of alternative techniques exist Most likely, a combination of techniques would 

provide the most fruitful results The difficulty m marrying several techniques is 

in determining the weight each should be assigned when ranking predictions It 

is entirely conceivable that without a well weighted hierarchy, hybrid techniques 

might preform worse then language modelling alone Nevertheless, as experi­

ments by Lesher et al (2002) indicate, when aided by computers, humans can 

predict 10 percent better than statistic based systems alone, as they combine 

several factors into their predictions Thus, hybrid techniques, which combine 

knowledge from various sources m a fashion similar to humans, warrant further 

research

Keyboard layout In examining keyboard layouts, we believe that alphabetic 

keyboards proved superior because they facilitated easy searching During our 

own user tests, users often expressed the belief that one positive aspect of the 

random keyboard was the perceived word connectivity Although the keyboard 

was designed at random, they felt that it had properties which simplified sear­

ching Zhai et al (2002) designed keyboards designed to increase word connecti­

vity, however, no experiments were carried out to evaluate the performance gams 

possible Based on user feedback, we believe that the design of such keyboards 

warrants further research

Final thoughts Finally, although our text-entry technique has attempted to 

bring the familiar static keyboard into VR, alternative gestural techniques -  desi­

gned for small devices -  such as Dasher (Ward et a l , 2000) and Hex (Williamson 

and Murray-Smith, 2003) question the need for such an approach These techni­

ques, which use linguistic information to dynamically alter the keyboard during 

typing, would take on another dimension m 3D and would provide fascinating 

research material if combined with spatially tracked gloves
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A ppendix A

N A SA  TLX Questionaire

During summative evaluation of the system, each participant completed a ques­

tionnaire An informed consent form (Page 191) was completed before the experi­

ment commenced Page 192 or 193 was selected where appropriate depending on 

the experiment Page 194 (From Hart and Staveland, 1988) was made available 

for reference throughout the experiment Page 195 was presented to participants 

after each condition Finally, Page 196 was completed after the final condition
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Chapter A NASA TLX Questionale

Informed consent form.

I state that I am over 18 years of age, and wish to participate in a program of research 
being conducted by Barry McCaul, in the School of Computing, Dublin City 
University, as part of his Ph D research

The purpose of the research is to evaluate text-entry techniques within immersive VR 
environments The experiments consist of both automatic and visual monitonng of my 
interaction with the VR system, while I attempt to complete requested tasks in the 
environment I will also be asked to complete a bnef questionnaire, designed to asses 
my previous VR ability and evaluate the text input techniques used

All information collected in the study is strictly confidential, and my name will not be 
identified at any time I understand that I am free to ask questions or withdraw from 
participation at any point

Signature of Participant Date
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Chapter A NASA TLX Questionale

General Information

Name     Student Number

Standard keyboard typing speed (WPM) ____ Date of Birth  / __ /19

Have you had any previous experience with VR, including 3D computer games?

Have you had any previous expenence with datagloves?

Please rank (1-4) the 4 keyboards tested in order of preference 

__ Qwerty

__ Op*1
  Alphabetic
  Random

Would you like to comment further on your choices?
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General Information

Name _____________________________  Student Number

Standard keyboard typing speed (WPM) ___  Date of Birth  / __ /19

Have you had any previous experience with VR, including 3D computer games9

Have you had any previous experience with datagloves9

Please rank (1-4) the 4 methods tested in order of preference

  6 fingers without visual cue

  6 fingers with visual cue
  8 fingers without visual cue

  8 fingers with visual cue

Would you like to comment further on your choices9
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Chapter A NASA TLX Questionale

NASA TLX Rating Scale Definitions

RATING SCALE DEFINITIONS

Title Endpoints Descriptions
MENTAL DEMAND Low/High How much mental and perceptual 

activity was required (e g thinking, 
deciding,
calculating, remembering, looking, 
searching, e tc )9
Was the task easy or demanding simple 
or complex, exacting or forgiving9

PHYSICAL DEMAND Low/High How much physical activity was
required (e g pushing, pulling, turning,
controlling, activating, etc )9
Was the task easy or demanding, slow or
brisk, slack or strenuous, restful or
laborious9

TEMPORAL DEMAND Low/High How much time pressure did you feel due 
to the rate or pace at which the tasks or 
task elements occurred9 
Was the pace slow and leisurely or rapid 
and frantic9

EFFORT Low/High How hard did you have to work (mentally 
and
physically) to accomplish your level of 
performance9

PERFORMANCE Good/Poor How successful do you think you were in 
accomplishing the goals o f the task set by 
the
experimenter (or yourself)9 How satisfied 
were you with your performance in 
accomplishing these goals9

FRUSTRATION LEVEL Low/High How insecure, discouraged, irritated, 
stressed and annoyed versus secure, 
gratified, content, relaxed and complacent 
did you feel dunng the task9
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4 NASA TLX Participant Rating Form

Place a mark on each scale that represents the magnitude o f each factor in the task you just preformed

Mental Demand

Low High

Physical Demand

1 , 1 , 1 , 1 ■ 1 , 1 i 1 , 1 . 1 i 1 , 1
Low High

Temporal Demand 

1 , 1 , 1 , 1 , 1 , < 1 , 1 , 1  , L ,  1
Low High

Effort

1 , 1 , 1 , 1 , 1 , . 1 , I , 1 , 1 , 1
Low High

Performance

1 , 1 , 1 , 1 ■ 1 , . 1 , 1 , 1 , 1 , 1
Low High

Frustration

L .  1 , 1 . 1 i 1 . < 1 , 1 < 1 i 1 , 1
Low High
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Please circle the member o f each pair that provided the most significant source of workload variation in 
the tasks

MD Mental Demand EF Effort
PD Physical Demand OP Performance
TD Temporal Demand FR Frustration

PD  /  M D TD  / PD TD  / F R

TD  / M D O P /  PD TD  / EF

O P /  M D F R  /  PD O P /  FR

F R  /  M D EF / PD O P /  EF

EF /  M D TD  / O P EF /  FR
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