

ATWARM

project 3.7 Next generation autonomous analytical platforms for remote environmental monitoring:

Microfluidic platforms incorporating stimulus-responsive materials for Water Quality

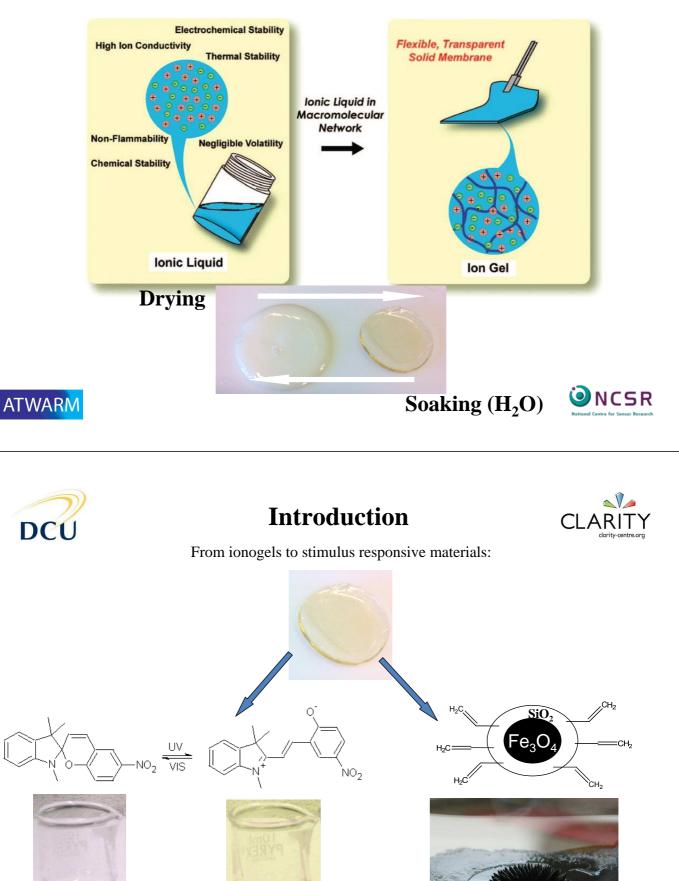
Bartosz Ziółkowski

Dermot Diamond

UNIVERSITY COLLEGE DUBLIN • DUBLIN CITY UNIVERSITY • TYNDALL NATIONAL INSTITUTE

Presentaton outline

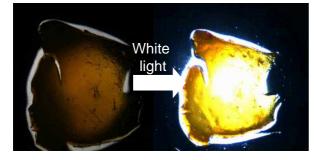
- 1. Introduction
- 2. The recent research focus
- 3. Training and outputs


ATWAR

Introduction

SR

From ionogels to stimulus responsive materials:



Introduction

From ionogels to stimulus responsive materials:

30% volume decrease in 5 seconds upon irradiation

Benito-Lopez, F. *et al.* Lab on a Chip 2010, 10, 195.

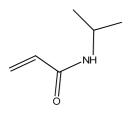
Trihexyltetradecylphosphonium cation

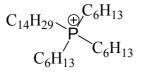
The research focus

Investigation of NIPAM polymerisation in [P_{6,6,6,14}] based ionic liquids

UV curing rheometry of ionogels

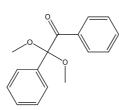
DSC polymerisation kinetics analysis



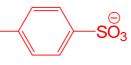


The chemistry:

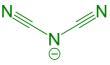
N-isopropylacrylamide (NIPAM) monomer

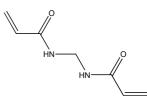


Trihexyl-tetradecyl phosphonium cation [P_{6,6,6,14}]


Cl⊖

Chloride [Cl]


ATWARM


Dimethoxyphenylacetophenone (DMPA) photoinitiator

p-toluenesulfonate [Tos]

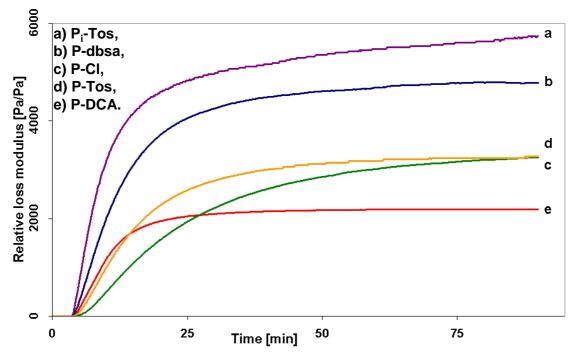
Dicyanamide [DCA]

N,N'-methylenebisacrylamide (MBIS) crosslinker

 $\overset{\bigcirc}{\mathrm{SO}_3}$ $C_{12}\mathrm{H}_{25}$ $\overset{\bigcirc}{\mathrm{SO}_3}$

p-dodecyl benzenesulfonate [dbsa]

 $H_3C_{\oplus}C_4H_9$ C₄H₉ C₄H₀


Tributyl-methyl phosphonium cation [P_{1,4,4,4}]

The research focus

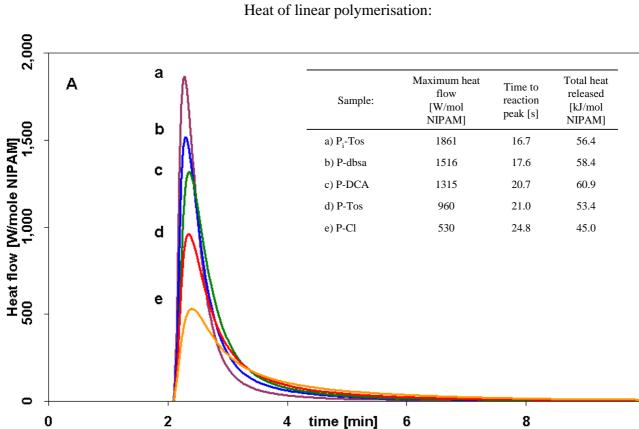
Rheology of linear polymerisation:

Relative viscous moduli curves during UV polymerisation of a) Pi-Tos, b) P-dbsa, c) P-CI, d) P-Tos, e) P-DCA. For each curve, the data was normalised by dividing the initial loss modulus value into the series.

Gel permeation chromatography of linear polymers:

sample	Average molecular weight Mn [g/mol]	Polydispersity index (PDI)	
P-dbsa	150 900	2.2	
P-DCA	130 600	1.6	
P _i -Tos	117 800	1.76	
P-Tos	111 300	1.42	
P-Cl	62 650	1.56	

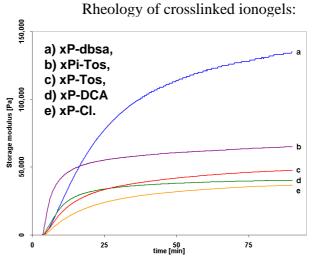
ATWARM


ARIT

(

The research focus

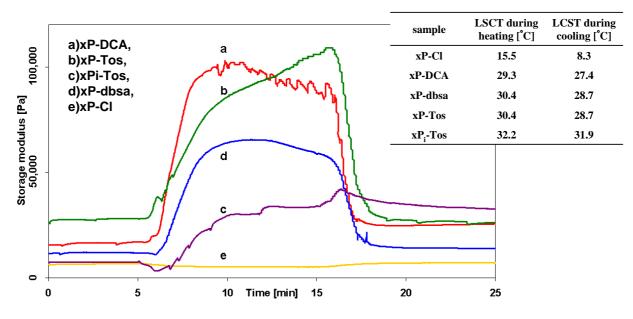
10


Heat of linear polymerisation:

DCU

The research focus

sample	Viscosity IL 25°C	G" (loss modulus) before	G" (loss modulus) [Pa]	G' (storage modulus)	Tan δ (G''/G') 90 min.
	[Pa·s]	curing [Pa]	90 min.	[Pa] 90 min.	
xP-dbsa	1.8	7.5	200 000	134 000	1.48
xP-Cl	1.955	4.17	42 700	36 700	1.16
xP-Tos	0.96	3.53	38 500	47 700	0.81
xP _i -Tos	1.36	3.06	52 000	65 170	0.80
xP-DCA	0.256	0.946	6 770	40 400	0.168



Lower Critica Solubility Temperature (LCST) behaviour of crosslinked ionogels:

Plots of storage modulus versus time during a temperature step program. The temperature was raised from 25 °C to 45 °C starting at 5th minute and was decreased at 15th minute from 45 °C to 25 °C. a) xP-DCA, b) xP-Tos, c) xPi-Tos, d) xP-dbsa, e) xP-CI.

The research focus

NCSR

Conclusions:

- Photo-polymerisation of pNIPAM in phosphonium based ionic liquids produces flexible ionogels
- Depending on the IL used: The polymerisation proceed as different rates Produces polymer chains with different lengths and size dispersity The ionogels have different viscoelastic properties (stiffness/stickiness)
- These ionogels when swollen with water still exhibit polymer LCST transition
- The temperature response of the water swollen ionogels is also dependant on the IL used
- The best ionogel was obtained with [P_{6,6,6,14}][DCA] ionic liquid

Training and outputs

NCSR

"Mechanical properties and U.V. curing behaviour of Poly(N-isopropylacrylamide) in phosphonium based ionic liquids" Bartosz Ziółkowski, Zeliha Ates, Simon Gallagher, Robert Byrne, Andreas Heise, Kevin J Fraser and Dermot Diamond - **submitted to Soft Matter**

"Integrating stimulus responsive materials and microfluidics – The key to next generation chemical sensors" Bartosz Ziółkowski, Monika Czugala and Dermot Diamond - review submitted to Journal of Intelligent Material Systems and Structures

"Magnetic iron oxide/poly(N-isopropylacrylamide/ionic liquid hybrid ionogels" Bartosz Ziółkowski, Kevin J Fraser, Robert Byrne, Dermot Diamond, and Andreas Taubert - being submitted to European Journal of Inorganic Composites

QUESTOR Workshop 28.02.2012 - DCU, Dublin

Analytical workshop 24th - 26th April 2012 - Trinity College Dublin

Talk entitled: "Magnetic ionogels for fluid handling in microfludic devices" accepted for CIMTEC 2012 conference (10-14 June 2012)

ATWARM

Colleagues from the NCSR

FP7 ATWARM grant (Marie Curie ITN, No. 238273).

SEVENTH FRAMEWORK

Thank you for attention!