
Hershey • New York
InformatIon scIence reference

Strategic Information
Systems:
Concepts, Methodologies,
Tools, and Applications

M. Gordon Hunter
University of Lethbridge, Canada

Volume I

Director of Editorial Content: Kristin Klinger
Development Editor Julia Mosemann
Senior Managing Editor: Jamie Snavely
Managing Editor: Jeff Ash
Assistant Managing Editor, MVB: Michael Brehm
Assistant Managing Editor: Carole Coulson
Typesetter: Jeff Ash,
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book set is original material. The views expressed in this book are those of the authors, but not necessarily of
the publisher.

Copyright © 2010 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by
any means, electronic or mechanical, including photocopying, without written permission from the publisher.
	 Product	or	company	names	used	in	this	set	are	for	identification	purposes	only.	Inclusion	of	the	names	of	the	products	or	companies	
does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com/reference

and in the United Kingdom by
Information Science Reference (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanbookstore.com

 Library of Congress Cataloging-in-Publication Data

Strategic information systems : concepts, methodologies, tools, and
applications / M. Gordon Hunter, editor.
 v. cm.
 Includes bibliographical references and index.
 Summary: “This 4-volume set provides a compendium of comprehensive advanced
research articles written by an international collaboration of experts
involved with the strategic use of information systems”--Provided by
publisher.
 ISBN 978-1-60566-677-8 (hardcover) -- ISBN 978-1-60566-678-5 (ebook) 1.
Management information systems. 2. Information technology--Management. 3.
Strategic planning. 4. Management information systems. I. Hunter, M. Gordon.
 HD30.213.S774 2010
 658.4’038011--dc22
 2009025715

 315

Copyright © 2010, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.23
Information Systems,

Software Engineering, and
Systems Thinking:

Challenges and Opportunities

Doncho Petkov
Eastern Connecticut State University, USA

Denis Edgar-Nevill
Canterbury Christ Church University, UK

Raymond Madachy
University of Southern California, USA

Rory O’Connor
Dublin City University, Ireland

AbstrAct

This article traces past research on the application
of the systems approach to information systems
development within the disciplines of informa-
tion systems and software engineering. Their
origins historically are related to a number of
areas, including general systems theory. While
potential improvement of software development
practices is linked by some leading experts to the
application of more systemic methods, the cur-
rent state of the practice in software engineering

and information systems development shows this
is some way from being achieved. The authors
propose possible directions for future research
and practical work on bringing together both
fields	with	systems	thinking.

IntroductIon

Information technology (IT) articles often include
statements along these lines: “systems develop-
ment continues to be challenging. Problems

316

Information Systems, Software Engineering, and Systems Thinking

regarding the cost, timeliness, and quality of
software products still exist” (Iivari & Huisman,
2007,	p.	35).	This	recognition	justifies	the	con-
tinuous search for improvement of Information
Systems Development (ISD).

Glass, Ramesh, and Vessey (2004) provide
an analysis of the topics covered by the three
computing disciplines—information systems
(IS), software engineering (SE), and computer
science (CS)—and show overlaps between them
all in the area of systems/software concepts. They
also demonstrate that CS has only minor regard
of the issues and concerns of systems/software
management. Sommerville (2007) states that CS
is concerned with the theories and methods that
underlie computers and software systems rather
than the engineering and management activi-
ties associated with producing software. Whilst
acknowledging that CS, SE, and IS do have a
considerable overlap, the practices of both IS and
SE have to deal with common matters such as the
management of huge development projects, human
factors (both software developers and software
end users), organisational issues, and economic
aspects of software systems development and
deployment (Van Vilet, 2000).

For the reasons stated above, we will concen-
trate here only on SE and IS and their links to
systems thinking. We will consider as a starting
point	the	reality	that	the	whole	computing	field	
has evolved historically as several “stovepipes of
knowledge”: CS, SE, and IS (Glass et al., 2004).
Whether the separation or integration of comput-
ing disciplines will prevail is a complex issue.
Integration has yet to be achieved as a consequence
of the sets of values central to each area. We be-
lieve, along with others, that a systems approach
may lead to improvement of the development and
management of software systems and to a greater
integration of computing. One might expect that
the use of the word “system” in various contexts
today leads to more “systems thinking,” but is
this true?

A	reflective	history	of	the	IS	field	is	presented	
in Hirschheim and Klein (2003, pp. 244-249). Ac-
cording to them, because of its roots in multiple
disciplines, “such as computer science, manage-
ment, and systems theory, it is hardly surprising
that	the	field	of	IS	cast	a	wide	net	when	defining	
its boundaries, sweeping in many themes and
boundaries” (Hirschheim & Klein, 2003, p. 245).
In that light, it is somehow striking to note the
conclusion about a lack of a systems approach
in IS research according to Lee (2004, p. 16).
Alter	(2004)	is	even	more	specific,	claiming	that	
“the information systems discipline is ostensibly
about systems, but many of our fundamental ideas
and viewpoints are about tools, not systems” (p.
757).

The systems approach has been acknowledged
in the SE literature as providing an insight into
the	factors	that	influence	the	success	or	failure	of	
computer technologies (Mathieu, 2002, p. 138).
It is symbolic that the 2006 special issue of the
IEEE Computer magazine on the 60th anniversary
of the IEEE Computer Society is dedicated to the
past and future of software engineering. A brief
examination of the papers in that issue shows
that four of them are dealing with some systems
features and the other three give examples of tool
thinking. None of the seven papers in the issue
had	a	reference	to	any	source	from	the	field	of	
systems thinking and only one paper (Baresi, Di
Nitto, & Ghezzi, 2006) had references to several
classic SE sources dealing with fundamental
systems ideas. This does not advance the ideas
suggested by Boehm (2006a) and Sommerville
(2007) that there is a need to integrate SE with
systems engineering, a branch of systems think-
ing (see Jackson, 2003).

The contribution of this research is in the iden-
tification	of	areas	where	a	systems	approach	would	
lead to improvements in ISD within a point of view
that favors implicitly the integration of the IS and
SE disciplines. The article will proceed with an
analysis of how links between software develop-
ment and systems thinking were perceived in the

 317

Information Systems, Software Engineering, and Systems Thinking

fields	of	IS	and	SE.	This	is	done	predominantly	
with the intention of exploring the application of
systems ideas to software development separately
in	the	two	fields,	outlining	the	success	stories	and	
the open problems. At the end, we will propose
possible directions for future research in software
development within SE and IS associated with the
systems approach.

on InformAtIon sYstems
deveLopment And sYstems
thInKIng

A review of the history of various IS development
methods is presented in Avison and Fitzgerald
(2003). Iivari and Huisman (2007) point out,
however, that the research literature on IS develop-
ment has been scarce. This is most evident for the
period after 1990. Prior to that point, the origins
of IS research were associated more strongly with
issues on building information systems. However,
one	sub-area	of	IS	development	grew	significantly	
in the U.K. and elsewhere over the last 20 years:
incorporation of Soft Systems Thinking (SST)
into IS.

soft systems thinking, social
Science, and Their Influence on IS

Stowell and West (1996) argued in the mid-1990s
that practices of IS design had not appeared to
have progressed since 1979; despite attempts in
several proposals to embrace the social aspects
of an information system, most seem to be based
upon a functionalist view. Stowell and West
(1996) explored the shift towards antipositivism
in the mid-1980s, which resulted in a number of
suggested methodologies that focused upon the
social implications of computer systems design. As
examples, they point out Soft Systems Methodol-
ogy (SSM) (Checkland, 1999), the MULTIVIEW
approach (Avison, 2000), participative systems
design, and others (see also Avison & Fitgerald,
2003).

 SSM evolved originally from experience
within interventions in various management
problems in public administration and industrial
companies. However, subsequently it evolved
more	towards	the	field	of	IS	(see	Checkland	&	
Holwell, 1998). Stowell (1995) presents a collec-
tion of papers analysing various aspects of the
contribution of SSM to IS. SSM seems to be the
most well researched interpretive systems ap-
proach	used	in	the	field	of	IS	(see	Holwell,	2000,	
for a detailed account of the literature on SSM, and
Checkland & Poulter, 2006, for a contemporary
presentation of SSM ideas).

The	relevance	of	SSM	to	the	field	of	IS	has	
been explored in two directions. One way is to
apply SSM on its own in some IT related aspect,
for example, extend the standard SSM method
to specify the information requirements of the
system (see Wilson, 1990). The use of SSM in
data modeling is explored by Lewis (1995). A
further application of SSM for improvement of
software quality is presented in Sweeney and
Bustard (1997). A second direction of using SSM
in information systems is through the linking of
SSM to existing design methods. An overview and
detailed analysis of using SSM with structured
analysis and design is provided by Mingers (1995).
Several authors have covered aspects of combining
the	Unified	Modeling	Language	(UML)	with	SSM.	
A recent paper by Sewchuran and Petkov (2007)
analyses the related theoretical issues and shows
a practical implementation of a combination of
UML and SSM within a Critical Systems Thinking
(CST)	(see	Jackson,	2003)	framework	justified	by	
Multimethodology (see Mingers, 2001).

on critical systems thinking,
multimethodology, and Is

Multimethodology is a metatheory for mixing
methods from different methodologies and para-
digms in the same intervention (Mingers, 2001).
It seems to be an attractive vehicle for further
research in systems thinking and IS research.

318

Information Systems, Software Engineering, and Systems Thinking

Further	refinement	of	the	ideas	on	pluralist	inter-
ventions can be found in a recent paper on Creative
Holism (Jackson, 2006). Details on three cases,
illustrating how Multimethodology and CST were
practiced in separate systemic interventions in the
Information and Communications Technologies
sector, can be found in Petkov, Petkova, Andrew,
and Nepal (2007).

In his paper on the links between CST and IS
research, Jackson (1992) demonstrates the power
of	an	integrated	critical	approach	in	the	IS	field.	
However, there have been relatively few subse-
quent publications on the practical application
of CST in IS. Some of them are surveyed in Ng-
wenyama and Lee (1997), a paper demonstrating
the	significant	relevance	of	CST	to	IS.	Another	
interesting example, exploring how Triple Loop
Learning (Flood & Romm, 1996) can be applied
to the complexities during systems development
is given in Finnegan, Galliers, and Powell’s (2002)
work. Further papers on systems thinking and IS
can be found in proceedings of several meetings on
the philosophical assumptions of IS research that
took place after 1997, including the U.K. Annual
Systems Conference, the European Conference on
Information Systems, the Australasian Conference
on IS, and Americas Conference on Information
Systems (AMCIS).

CST provides both theoretical sophistication
and practical directions for future research that
are applicable to IS. Jackson (2003) cautions that
whatever argument is made in favour of plural-
ism, it is bound to run up against objections from
those who believe in the incommensurability
of paradigms. The latter notion is linked to the
assumption that if paradigms have distinct and
opposing philosophical foundations, applying
them together is impossible. This issue has been
addressed by several authors in the past (see
Jackson, 2003). Zhu (2006), however, questioned
recently the relevance of concerns about paradigm
incommensurability from a practical point of view,
another issue for possible further research. His
view on paradigm incommensurability is similar

to that of the pragmatic pluralism approach. This
is based on the assumption that we are witnessing
the end of a particular reading of theory and that
there is no single truth and no single rationality
(White & Taket, 1996, p. 54).

Both pragmatism and functionalism are often
criticised in systems thinking (see Jackson, 2003).
However, an interesting and relevant new systems
approach in IS, the work system method (Alter,
2007), has emerged recently that may be linked
to the pragmatic school of thought.

the work system method and Is

Alter (2006) stresses that past dominance of
single ideas like Total Quality Management and
Business Process Re-engineering are not suf-
ficient	to	influence	the	IS	field	profoundly.	The	
work system method provides a rigorous but
nontechnical approach to any manager or busi-
ness professional to visualise and analyse systems
related problems and opportunities (Alter, 2006).
This method is more broadly applicable than
techniques “designed to specify detailed software
requirements and is designed to be more prescrip-
tive and more powerful than domain-independent
systems analysis methods such as soft system
methodology” (Alter, 2002). We may note that
making comparisons between the work system
method and soft systems methodology requires
a broader investigation of their philosophical as-
sumptions and scope. A possible starting point
for comparing their areas of applicability could
be	the	classification	of	strategies	for	doing	sys-
tems analysis provided by Bustard and Keenan
(2005). SSM has been attributed by them to the
situation when the focus is on development of a
long term vision of the environment in which a
computer	system	is	to	be	used	with	identification	
of appropriate organisational changes (see Bustard
& Keenan, 2005). Where Alter’s approach stands
in	the	Bustard	and	Keenan	(2005)	classification	
is an open question for research requiring both
theoretical	work	and	field	experimentation.	We	

 319

Information Systems, Software Engineering, and Systems Thinking

consider the systemic nature of the work system
method and its applicability to understanding
business and IS problems to be its most distinctive
and important characteristics. Though the work
system method has a relatively short history and a
small group of followers for now, the multifaceted
scale of Alter’s work, bringing together systems
ideas with methods for deeper understanding of
work systems and IS, has strong appeal.

on sticking to a single research
tradition in Is

Bennetts, Wood-Harper, and Mills (2000) pro-
vide an in-depth review of combinations of SSM
with other IS development methods supporting
multiple perspectives along the ideas of Linstone
(1984). Thus, they brought together two distinct
traditions in IS research: the former practiced
in U.K./Europe/Australia where SSM has found
significant	acceptance,	and	the	latter	was	pursued	
predominantly in the U.S. Linstone’s ideas are
strongly	related	to	the	influence	of	Churchman	
whose analysis of Inquiring Systems was a starting
point	for	some	significant	IS	research	that	followed	
(e.g., Vo, Paradice, & Courtney, 2001).

It is interesting to note that Bennetts et al.
(2000) have examined sources not only from IS
but also from the CS and SE literature. This raises
a question that is hard to answer in a simple way.
We observe that often authors of SE articles belong
to CS or IS departments, rather than engineering
schools (Aurum & Wohlin, 2005; Dietrich, Floyd,
& Klichewski, 2002). On the other hand, it seems
that publications on IS development written by
U.S. scholars often use references only from IS
or	from	SE	disciplines,	depending	on	the	field	of	
the authors; a refreshing exception is a series of
articles written over many years by R. Glass and
I. Vessey with several collaborators (Glass et al.,
2004). The reason could be the lack of communi-
cation between CS, SE, and IS (see Glass, 2005).
Another possible reason is the growing concern
within	the	separate	computing	fields	for	promot-

ing and protecting their own paradigms (Bajaj,
Batra, Hevner, Parsons, & Siau, 2005).

Maybe similar paradigmatic concerns have led
Allen	Lee	to	formulate	his	first	idea	from	an	advice	
to IS researchers: “practice paradigm, systems
thinking and design science” (Lee, 2000). These
are seen as a recipe to address the three dilemmas
that are as relevant today as they were in 2000: the
rigor vs. relevance debate in IS research; the “ref-
erence discipline” vs. “independent discipline”
dilemma; and the technology vs. behaviour as a
focus for IS research dilemma.

So far, we have considered the second of Lee’s
ideas and its relevance to IS development over the
last 15 years and to a lesser degree some issues
related	to	scientific	paradigms	in	terms	of	Kuhn	
(1970). Further details on earlier contributions
of Systems Science in the 1970s and 1980s can
be found in comprehensive reviews related to
the	fields	of	IS	research	(see	Xu,	2000),	Decision	
Support Systems (see Eom, 2000), and Informa-
tion Resources Management (see McLeod, 1995).
Mora, Gelman, Forgionne, Petkov, and Cano
(2007) presented a critique and integration of
the main IS research paradigms and frameworks
reported in the IS literature using a systems ap-
proach.	We	 briefly	 comment	 below	 on	 design	
science, a more recent trend in IS research.

on design science As one of the
directions to resolve the three
dilemmas in Is

According to Hevner, March, Park, and Ram
(2004), IS related knowledge is acquired through
work in behavioural science and design science
paradigms. They point out that “behavioral science
addresses research through the development and
justification	of	theories	that	explain	phenomena	
related	to	the	identified	business	need,	while	design	
science addresses research through the building
and evaluation of artifacts designed to meet the
particular need.” Another relevant detail is the
differentiation that Hevner et al. (2004) make

320

Information Systems, Software Engineering, and Systems Thinking

between routine design and system building from
design science. The former is associated with ap-
plication of existing knowledge to organisational
problems, while the latter is associated with unique
(often wicked or unresolved) problems that are
associated with the generation of new knowledge.
The latter idea is similar to the main thesis in
Hughes and Wood-Harper (1999). Hevner et al.
(2004)	laid	the	foundation	for	a	significant	boost	
in IS research on issues related to IS development,
including systems analysis and design science.
The journal Communications of AIS started a
series	of	articles	in	2005	on	this	topic;	the	first	of	
which was Bajaj et al. (2005). We may note that
in spite of progress in applying action research
in IS in theory (see Baskerville & Wood-Harper,
1998) and in practice (see the IbisSoft, n.d., posi-
tion statement on environment that promotes IS
research) the dominant IS research trend has been
of a positivist behavioural science type which is
another challenge for the proponents of a systems
approach.

A substantial attempt to provide suggestions
towards resolving the three dilemmas in IS re-
search mentioned by Lee (2000) is discussed in
Hirschheim and Klein (2003). They identify a
number of disconnects between various aspects of
IS research and outline a new body of knowledge
in IS development (Iivari, Hirschheim, & Klein,
2004).	 They	 suggest	 there	 are	 five	 knowledge	
areas in ISD: technical knowledge, application
domain (i.e., business function) knowledge, or-
ganisational knowledge, application knowledge,
and ISD process knowledge. Further, according
to Hirschheim and Klein (2003):

ISD process knowledge is broken down into four
distinctive competencies that IS experts are sug-
gested to possess: (1) aligning IT artefacts (IS
applications and other software products) with
the organizational and social context in which
the artefacts are to be used, and with the needs
of the people who are to use the system as identi-
fied through the process of (2) user requirements

construction…(3) organizational implementation
from which (4) the evaluation/assessment of these
artefacts and related changes is factored out ….
These competencies are … at best weakly taken into
account in the ten knowledge areas of SWEBOK.
(see for comparison SWEBOK, 2004)

Hirschheim and Klein (2003) present compre-
hensive	proposals	for	strengthening	the	IS	field.	
Their work was partly motivated by a widely
discussed paper by Benbasat and Zmud (2003)
on the identity crisis in the IS discipline. Both
papers provide important background details
about the IS research environment in which one
may pursue the main ideas of this article. The
next section will explore the relevance of systems
thinking to SE.

on softwAre engIneerIng And
sYstems thInKIng

Software engineering has a primary focus on the
production of a high quality technological product,
rather than on achieving an organisational effect,
however increasing emphasis in SE is being given
to managerial and organisational issues associated
with software development projects. Cornford
and Smithson (1996) observe that SE “can never
encompass the whole range of issues that need
to be addressed when information systems are
studies in the full richness of their operational
and organisational setting”.

Weinberg (1992) writes about systems thinking
applied to SE. It is an excellent introduction to
systems thinking and quality software manage-
ment dealing with feedback control. It has a close
kinship with the concepts of systems thinking
and system dynamics in Madachy (2007), even
though it is almost exclusively qualitative and
heuristic. Weinberg’s main ideas focus around
management thinking about developing complex
software systems, having the right “system model”
about the project and its personnel.

 321

Information Systems, Software Engineering, and Systems Thinking

Systems thinking in the context of SE, as
described in Madachy (2007), is a conceptual
framework with a body of knowledge and tools to
identify wide-perspective interactions, feedback,
and recurring structures. Instead of focusing on
open-loop event-level explanations and assum-
ing cause and effect are closely related in space
and time, it recognises the world really consists
of multiple closed-loop feedbacks, delays, and
nonlinear effects.

Lee and Miller (2004), in their work on multi-
project software engineering, advocate a systems
thinking approach as “in general, we are able to
make better, more robust, and wiser decisions with
systems thinking, since we are considering the
problem by understanding the full consequences
of each feasible solution”.

Other details on systems thinking with links
to other books and articles can be found through
practitioner’s Web sites such Weinberg (2007),
Developer (2007), or Yourdon (2007). The inter-
est of software practitioners in systems ideas is
a	significant	fact,	in	light	of	the	previously	men-

tioned debate about relevance in the IS literature.
However, systems thinking is not mentioned by
Reifer (2003) in his taxonomies of the SE theory
state-of-the-art and SE state of practice. In relation
to that, we will discuss below whether systems
ideas are promoted in SE education.

software engineering education
and systems thinking

The coverage of systems concepts in leading SE
textbooks is possibly another indicator about the
way the systems approach is perceived within the
SE community. We considered books by several
well established authors: Sommerville (2007),
Pressman	(2001),	and	Pfleeger	(2001),	amongst	
many.	Table	1	shows	a	summary	of	findings	re-
lated to the treatment of several typical systems
notions in those books.

Table 1 shows that the systems concepts
covered in the three widely used textbooks are
mostly related to introductory notions from
systems thinking. There is nothing about open

Notions covered Author

Sommerville Pressman Pfleeger

System	definition Yes Yes Yes

Boundary Implied Yes Yes

Open vs Closed systems No No No

Relationships Implied Implied Yes

Inter-related systems Implied Implied Yes

Emergent property Yes No No

Decomposition Yes Yes Yes

Coupling No Yes Yes

Cohesion No No Yes

Hierarchy Yes Yes Yes

System behaviour Yes Yes Yes

Law of
requisite variety No No No

Sociotechnical systems Yes No No

Systems engineering Yes To some
extent

To some
extent

Table 1. Systems features covered in popular software engineering textbooks

322

Information Systems, Software Engineering, and Systems Thinking

and closed systems, about the law of requisite
variety or any other aspect of cybernetics, very
little about sociotechnical systems, and nothing
about soft systems methodology or CST. In our
opinion, these are unexploited notions that have
some potential to introduce fresh ideas in SE after
further research.

Crnkovic, Land, and Sjogren (2003) question
whether the current SE training is enough for
software engineers. They call for making system
thinking more explicit in SE courses. They claim
that	 “the	 focus	 on	modifiability	 (and	 on	 other	
non-functional properties) requires more of a
holistic and system perspective” (Crnkovic et al.,
2003). Similar thoughts are shared more recently
by others in engineering like Laware, Davis, and
Perusich (2006).

 The narrow interpretation of computing
disciplines is seen as a contributory factor to the
drop	in	student	enrolments	in	the	last	five	years.	
Denning (2005) hopes that students will be at-
tracted by a new educational approach promoted
by the ACM Education Board that relies on four
core practices: programming, systems thinking,
modeling, and innovating. It has now been four
years since those ideas were stressed by ACM, but
there is little evidence that systems thinking has
become a core practice emphasised in teaching
in any of the three computing disciplines.

In the U.K., the Quality Assurance Agency
(which monitors and quality assures all U.K.
university programmes) recently published the
updated version of the computing benchmark
statement (encompassing IS, SE, and CS) on the
content and form of undergraduate courses (QAA,
2007). Although not intended to be an exhaustive
list but “provided as a set of knowledge areas
indicative of the technical areas within comput-
ing,” it fails to make explicit reference to systems
thinking or systems approaches and makes only
one reference to “systems theory” under a more
general heading of “systems analysis and design”.
Perhaps the answer is to explore how to introduce
these concepts earlier in pre-university education

or to continue to try to convince the broader aca-
demic community of the importance of systems
thinking.

One promising systems approach used for edu-
cation of software engineers is the Model-Based
System Architecting and Software Engineering
(MBASE) framework being used at USC, and
also	adapted	by	some	of	their	industrial	affiliates.	
According to Boehm (2006c), MBASE integrates
the systems engineering and SE disciplines, and
considers stakeholder value in the system de-
velopment. The MBASE framework embodies
elements of agile processes and teaches students
to “learn how to learn” as software development
will continue to change. Valerdi and Madachy
(2007) further describe the impact of MBASE
in education.

on software engineering and
systems engineering

Systems Engineering is concerned with all aspects
of the development and evolution of complex sys-
tems where software plays a major role. Systems
engineering is therefore concerned with hardware
development, policy and process design, and sys-
tem deployment, as well as software engineering.
System engineers are involved in specifying a
system,	defining	its	overall	architecture,	and	then	
integrating	the	different	parts	to	create	the	finished	
system. Systems engineering as a discipline is
older than SE, as people have been involved in
specifying and assembling complex industrial
systems such as aircraft and chemical plants for
more than 100 years (Sommerville, 2007).

A thought provoking comparison of SE culture
vs. systems engineering culture is presented by
Gonzales (2005). This work points out to where
we should strive to change the perceptions of the
SE student entering the IT profession. We agree
with Gonzales (2005) that we “must continue the
dialogue and ensure that we are aware of strides
to formalise standard systems engineering ap-
proaches and generalise software engineering

 323

Information Systems, Software Engineering, and Systems Thinking

approaches to capturing, specifying and managing
requirements” (p. 1). We would also suggest that
this dialogue should be supported by more work
on the application of a systems approach to SE,
stimulated by journals such as IJITSA.

Boehm (2006b) concludes that “The push to in-
tegrate application-domain models and software-
domain models in Model Driven Development
reflects	the	trend	in	the	2000’s	toward	integration	
of software and systems engineering”. Another
reason	 he	 identifies	 is	 that	 other	 surveys	 have	
shown that the majority of software project fail-
ures stem from systems engineering shortfalls. A
similar thought is expressed by Boehm and Turner
(2005), who state that there is a need to move
towards	a	common	set	of	 life-cycle	definitions	
and processes that incorporate both disciplines’
needs and capitalise on their strengths.

Boehm (2006a) points out that “recent process
guidelines and standards such as the Capability
Maturity Model Integration (CMMI), ISO/IEC
12207 for software engineering, and ISO/IEC
15288 for systems engineering emphasise the need
to integrate systems and software engineering
processes”. He further proposes a new process
framework for integrating software and systems
engineering for 21st century systems and improv-
ing the contractual acquisition processes. Another
issue is how to capitalise on the new developments
in SE over the last decade which will be discussed
in the next section.

the evolution of plan-driven and
Agile methods in se and system
thinking

The traditional software development world,
characterised by software engineering advocates,
use plan-driven methods which rely heavily on
explicit documented knowledge. Plan-driven
methods use project planning documentation to
provide broad-spectrum communications and rely
on documented process plans and product plans to
coordinate everyone (Boehm & Turner, 2004). The

late 1990s saw something of a backlash against
what was seen as the over-rigidity contained
within plan-driven models and culminated in the
arrival of agile methodologies, which rely heavily
on communication through tacit, interpersonal
knowledge for their success.

Boehm and Turner (2004) quote Philippe
Kruchten (formerly with IBM Canada and now a
professor at UBC in Vancouver) who has likened
the Capability Maturity Model (CMM)—a plan-
drive approach—to a dictionary:

‘that is, one uses the words one needs to make the
desired point; there is no need to use all the words
available’ (p. 23). They conclude that processes
should have the right weight for the specific project,
team, and environment. Boehm and Turner (2004)
have produced the first multifaceted comparison
of agile and plan-driven methods for software
development. Their conclusions show that neither
provides a ‘silver bullet’ (Brooks, 1987). Some
balanced methods are emerging. We need both
agility and discipline in software development.
(Boehm & Turner, 2004, p. 148)

Boehm (2006b) presents a deep analysis of the
history of SE and of the trends that have emerged
recently. These include the agile development
methods: commercial off-the-shelf software and
model driven development. The same author points
out that the challenges are in capturing the evolv-
ing IT infrastructure and the domain restructur-
ing that is going on in industry. In our opinion,
it is necessary to investigate further if systems
thinking may play a role in integrating agile and
plan-driven methods (see Madachy, Boehm, &
Lane, 2007, as an application of systems thinking
to this problem). It has also been speculated that
systems thinking could be relevant to Extreme
Programming (XP) as it supports building relevant
mental models (see Wendorff, 2002).

A recent paper by Kroes, Franssen, van de Poel,
and Ottens (2006) deals with important issues
in systems engineering such as how to separate

324

Information Systems, Software Engineering, and Systems Thinking

a system from its environment or context. They
conclude that the idea that a sociotechnical system
can be designed, made, and controlled from some
central view of the function of the system has to be
given up, as many actors within the sociotechnical
system are continuously changing (redesigning)
the system. This is an important issue deserving
further investigation in light of software systems
and the methods implied by agile development
frameworks.

systems dynamics and se

A widely publicised idea is modeling software
development processes through systems dynamics
(see Abdel-Hamid & Madnick, 1991; Madachy,
2007; and others). The differences and relation-
ships between systems dynamics and systems
thinking are detailed in Richmond (1994) and
others. Systems dynamics is a tool that can as-
sist managers to deal with systemic and dynamic
properties of the project environment and can
be used to investigate virtually any aspect of the
software process at a macro or micro level. It is
useful for modeling sociotechnical factors and
their feedback on software projects. The systems
dynamics paradigm is based on continuous sys-
tems modeling, which has a strong cybernetic
thread. Cybernetic principles are relevant to many
types of systems including software development
systems, as detailed in Madachy (2007).

The primary purposes of using systems dy-
namics or other process modeling methods in SE
as summarised from Madachy (2007) are strategic
management, planning, control and operational
management, process improvement and technol-
ogy adoption, and training and learning. Example
recent work by Madachy (2006) focuses on the
use of systems dynamics to model the interaction
between business value and the parameters of a
software process for the purpose of its optimisa-
tion. Another application of systems dynamics to
assess a hybrid plan-driven and agile process that
aims to cope with the requirements of a rapidly

changing software environment while assur-
ing high dependability in Software-Intensive-
Systems-of-Systems (SISOS) is presented in
Madachy, Boehm, and Lane (2007).

on other methods of systems
thinking Applicable to se

The development of understanding of a particular
software project for making better judgments
about the cost factors involved in cost and ef-
fort estimation is supported also by the work of
Petkova and Roode (1999). They implemented a
pluralist systemic framework for the evaluation
of the factors affecting software development
productivity within a particular organisational
environment. It combines techniques from several
paradigms:	stakeholder	identification	and	analysis	
(from SAST, see Mason & Mitroff, 1981), from
SSM (Checkland, 1999), Critical Systems Heu-
ristics (Ulrich, 1998), and the Analytic Hierarchy
Process (Saaty, 1990).

While	we	could	not	find	any	specific	earlier	
accounts of the use of SSM in the mainstream SE
literature,	it	is	significant	that	Boehm	(2006a)	has	
recognised its potential as he quotes its originator
in a recent paper:

Software people were recognising that their
sequential, reductionist processes were not con-
ducive to producing user-satisfactory software,
and were developing alternative SE processes
(evolutionary, spiral, agile) involving more and
more systems engineering activities. Concur-
rently, systems engineering people were coming
to similar conclusions about their sequential,
reductionist processes, and developing alterna-
tive “soft systems engineering” processes (e.g.,
Checkland, 1999), emphasising the continuous
learning aspects of developing successful user-
intensive systems.

One does not need always to have a systems
philosophy in mind to generate an idea that has a
systemic nature or attempts to change the current
thinking in SE. Thus, Kruchten (2005) presents,

 325

Information Systems, Software Engineering, and Systems Thinking

under the banner of postmodernist software de-
sign, an intriguing framework for software design
borrowed from architecture. One may investigate
how such an approach is different from a systemic
methodology and what are their common features.
Starting from a language-action philosophy point
of view, Denning and Dunham (2006) develop a
framework of innovation based on seven practices
that are inter-related in their innovation model—
every element is in a relationship with all others,
thus	 fulfilling	 the	 criterion	 for	 “systemicity”	
by Mitroff and Linstone (1993). We need more
analogical examples of systemic reasoning or
even just of alternative thinking related to every
aspect of the work of a software engineer and IS
developer demonstrating the power of innovative
interconnected thinking. The analysis so far allows
us now to formulate some recommendations in
the following section.

concLudIng recommendAtIons
on the need for more
reseArch LInKIng softwAre
engIneerIng, InformAtIon
sYstems deveLopment, And
sYstems thInKIng

We may derive a number of possible directions
for future work from the analysis of research and
practice in ISD and systems thinking within the
fields	of	IS	and	SE.	Alter	(2004)	has	produced	a	
set of recommendations for greater use of systems
thinking in the IS discipline which incorporate
various aspects of the work system method. We
believe that Alter’s proposals are viable and de-
serve the attention of IS and SE researchers.

Boehm and Turner’s (2005) suggestions to ad-
dress management challenges in integrating agile
and plan-driven methods in software development
will be used by us as an organising framework for
formulating directions for research on integrating
IS,	SE,	and	the	systems	approach.	The	five	main	

points	below	are	as	defined	originally	by	Boehm	
and Turner (2005) for their purpose, while we have
provided for each of them suggestions promoting
such integration along the aims of this article:

1. Understand how communication occurs

within development teams: There is a need
to continue the work on integrating systemic
methods promoting organisational learning
(see Argyris & Schon, 1978) like systems
dynamics, stakeholder analysis, soft systems
methodology, critical systems thinking, and
others to identify the advantages of using
specific	methods	and	their	limitations	when	
dealing with uncovering the microclimate
within a software development team. Most
of the previously mentioned applications
of systems methods for this purpose have
had limited use and little experimental
evaluation. More case studies need to be
conducted in different software develop-
ment organisations to validate the claims
for the applicability of such methods and
to distil from the accumulated knowledge
best practices and critical success factors
relevant	 to	flexible,	high	quality	software	
development teams. We may expand further
the boundary of investigations with respect
to what is happening at the level of systems-
of-systems (see Sage, 2005). An example of
related relevant ideas on cost estimation for
large and complex software projects can be
found in Lane and Boehm (2007). Another
direction is to explore information systems
development as a research act, as suggested
by Hughes and Wood-Harper (1999) and
Hevner et al. (2004), as well as the philosophy
of integrating practice with research in the
field	of	software	and	management,	promoted	
by IbisSoft (n.d.).

2. Educate stakeholders:This is probably the
most	difficult	task	of	all.	It	needs	to	be	ad-
dressed at several levels:

326

Information Systems, Software Engineering, and Systems Thinking

• Implement changes in educational
curricula—it is essential to introduce the
systems idea in relatively simple forms
at the undergraduate level and in more
sophisticated detail at the masters’ level.
There is a need to create the intellectual
infrastructure for more doctoral disserta-
tion projects in IS or SE involving systems
thinking. Teaching could be supported
by creating an accessible repository for
successful utilisation of systems ideas
in IT education. Amongst the many
examples we may mention here the use
of SSM in project-based education at a
Japanese university (Chujo & Kijima,
2006), on integrating systems thinking
into IS education (see Vo, Chae, & Olson,
2006), or the use of MBASE in student
projects (see Boehm, 2006c; Valerdi &
Madachy, 2007).

• Broaden the systems knowledge of IS
and software engineering educators—
the current situation in some of the
computing disciplines can be compared
to a similar one in Operations Research
(OR) in the 1960s, which had evoked a
sharp critique by Ackoff (1999) in his
famous paper “The Future of Operational
Research Is Past.” published originally
in 1979. Ackoff (1999, p. 316) points that
survival, stability, and respectability
took precedence over development and
innovativeness in OR in the mid-1960s
and its decline began. The challenge how-
ever is not just to bring systems thinking
to IS and SE education beyond several
elementary concepts of general systems
theory but to keep up to date with the
latest body of knowledge in the systems
field. For a comprehensive overview, see
Jackson (2003) and, for recent develop-
ments in systems science, see Barton,
Emery, Flood, Selsky, and Wolstenholm
(2004).

• Empower IT developers to practice
systemic thinking—a	 significant	 role	
here needs to be played by research on
the most suitable forms for continuing
professional education on IT and the
systems approach, supported by profes-
sional meetings and journals for mixed
audiences like this one, that are oriented
to academia and industry practice. Ackoff
(2006) underlines that one of the reasons
why systems ideas are adopted by few
organisations is that “very little of the sys-
tems literature and lectures are addressed
to potential users” (p. 707). Further, he
stresses the need to analyse management
failures systemically, pointing out that
there are two types of failures: errors of
commission and errors of omission. In
spite of publications analysing software
failures like Glass (2001), there is still
room for systemic analysis of IT failures
and there are very few accounts of errors
of omission in software projects.

• Change the attitudes of clients in manage-
rial and operational user roles—viable
research and practical activities in this
direction could use the work system
method (Alter, 2006) and other relevant
methods to develop better understanding
of organisational problems and to im-
prove their communication with software
developers.

3. Translate agile and software issues into
management and customer language:
We may suggest several possible directions
here:

• Investigate in a systemic way the existing
agile and plan-driven models for software
development and continue with the work
started in Boehm (2006a) on creating new
process models integrating not just SE
and systems engineering ideas but other
applicable systems concepts as well.

 327

Information Systems, Software Engineering, and Systems Thinking

• Explore the applicability of “Sysperanto”
(see Alter, 2007) to foster a common
language for all stakeholders in software
development.

• Build methods and tools to facilitate
the communication process between
software developers, customers, and sup-
porting multiple perspective representa-
tions of problem situations as proposed
by Linstone (1984).

4. Emphasise value for every stakeholder:
Design science research and agile methods
place high emphasis on this idea. There is a
need for more research on systemic identifi-
cation of stakeholder values. Further, there
is a need for research on methods to model
and help the effective analysis and better
systemic understanding of all aspects of soft-
ware development, related to the technical
product attributes, the project organisational
attributes, the developers attributes, and
the client features in a particular project or
system-of-projects.

5. Pick good people, reward the results, and
reorient the reward system to recognise
both individual and team contribution:
These suggestions can be categorised as hu-
man resource management issues and hence
are also suitable for investigation through
suitable systemic approaches and problem
structuring methods, including multicriteria
decision analysis, promoting evaluation,
and decision making.

One of the limitations of the scope of our
proposals is that we have provided suggestions
reflecting	only	on	the	above	five	ideas	by	Boehm	
and Turner (2005). A systemic investigation of all
aspects of ISD could lead to a much broader set
of considerations integrating SE, IS, and systems
thinking. We believe, however, that the examples
we have provided here can lead to easier adaptation
and development of other relevant ideas serving

a similar purpose. Another possible limitation is
that we have produced our suggestions for future
research on integrating SE, IS, and the systems
approach by assuming that the current state of the
art and practice in SE and IS are known and we
have focused rather only on identifying examples
of the use of a systems approach in IS or SE. As
we have pointed out earlier, we have relied on the
comprehensive analysis of the state-of-the-art of
the IS discipline provided by Hirschheim and
Klein	(2003).	We	have	also	reflected	on	trends	in	
SE (see Reifer, 2003; Boehm, 2006a, b; Boehm
& Turner, 2004) and on the comparative analysis
of research in the three computing disciplines by
Glass et al. (2004). It would be interesting to con-
duct a further investigation of IS implementation
as a whole that goes beyond the existing disciplin-
ary boundaries and takes a systems approach as
an organising viewpoint.

Most of our recommendations on integrating
IS, SE, and systems thinking relate to issues of
organisational learning where contemporary
systems	methods	 have	 a	 significant	 history	 of	
achieving improvement. The challenge for IS and
SE practitioners, researchers, and educators is not
just to investigate the issues we discussed in this
article but also to practice what was learned for
improved ISD.

AcKnowLedgment

The authors are very grateful to D. Bustard and
I. Bider for their very insightful comments that
helped improve the article and to the editors of
IJITSA for their encouragement.

references

Abdel-Hamid, T.K., & Madnick, S.E. (1991).
Software project dynamics. Englewood Cliffs,
NJ: Prentice Hall.

328

Information Systems, Software Engineering, and Systems Thinking

Ackoff, R. (1999). Ackoff’s best: His classic writ-
ings on management. New York: Wiley.

Ackoff, R. (2006). Why few organizations adopt
systems thinking. Systems Research and Behav-
ioral Science, 23(5), 705-708.

Alter, S. (2002). The work system method for
understanding information systems and informa-
tion systems research. Communications of the
AIS, 9(6), 90-104.

Alter, S. (2004). Desperately seeking systems
thinking in the information systems discipline. In
Proceedings of Twenty-Fifth International Con-
ference on Information Systems (pp. 757-769).

Alter, S. (2006). The work system method: Con-
necting people, processes, and IT for business
results. Lakspur, CA: Work System Press.

Alter, S. (2007). Could the work system method
embrace system concepts more fully? Information
Resources Management Journal, 20(2), 33-43.

Argyris, C., & Schon, D.A. (1978). Organiza-
tional learning: A theory of action perspective.
Addison-Wesley.

Aurum, A., & Wohlin, C. (Eds.). (2005). Engi-
neering and managing software requirements.
Heidelberg, Germany: Springer.

Avison, D. (2000). Multiview: An exploration
in information systems development (2nd ed.).
Alfred Waller Ltd.

Avison, D.E., & Fitzgerald, G. (2003). Where now
for development methodologies? Communications
of ACM, 46(1), 79-82.

Bajaj, A., Batra, D., Hevner, A., Parsons, J., &
Siau, K. (2005). Systems analysis and design:
Should we be researching what we teach? Com-
munications of the AIS, 15, 478-493.

Baresi, L., Di Nitto, & Ghezzi, C. (2006). Toward
open-world software: Issues and challenges. IEEE
Computer, 39(10), 36-43.

Barton, J., Emery, M., Flood, R.L., Selsky, J., &
Wolstenholm, E. (2004). A maturing of systems
thinking? Evidence from three perspectives.
Systemic Practice and Action Research, 17(1),
3-36.

Baskerville, R., & Wood-Harper, A.T. (1998).
Diversity in information systems action research
methods. European Journal of Information Sys-
tems, 7(2), 90-107.

Benbasat, I., & Zmud, R. (2003, June). The iden-
tity	crisis	within	the	IS	discipline:	Defining	and	
communicating the discipline’s core properties.
MIS Quarterly, 27(2), 183-194.

Bennetts, P.D.C., Wood-Harper, T., & Mills, S.
(2000). A holistic approach to the management
of information systems development. Systemic
Practice and Action Research, 13(2) 189-206.

Boehm, B. (2006a). Some future trends and im-
plications for systems and software engineering
processes. Systems Engineering, 9(1), 1-19.

Boehm, B. (2006b). A view of 20th and 21st century
software engineering. In Proceeding of the 28th
international conference on Software Engineer-
ing. Shanghai, China (pp. 12-29).

Boehm, B. (2006c). Educating students in value-
based design and development (Keynote address).
In Proceedings of the 19th Conference on Software
Engineering Education and Training (CSEET).

Boehm, B., & Turner, R. (2004). Balancing agility
and discipline: A guide for the perplexed. Boston:
Addison-Wesley.

Boehm, B., & Turner, R. (2005). Management
challenges for implementing agile processes in
traditional development organizations. IEEE
Software, 5, 30-39.

Brooks, F.P. (1987). No silver bullet: Essence and
accidents of software engineering. In Proceedings
of the IFIP 10th World Computing Conference
(pp. 1069-1076).

 329

Information Systems, Software Engineering, and Systems Thinking

Bustard, D.W., & Keenan, F.M. (2005, April 3-8).
Strategies for systems analysis: Groundwork for
process tailoring. In Proceedings of 12th Annual
IEEE International Conference and Workshop
on the Engineering of Computer Based Systems
(ECBS 2005), Greenbelt, Maryland (pp. 357-
362).

Checkland, P. (1999). Systems thinking, systems
practice. Chichester: Wiley.

Checkland, P., & Holwell, S. (1998). Information,
systems and information systems. Chichester:
Wiley.

Checkland, P., & Poulter, J. (2006). Learning for
action: A short definitive account of soft systems
methodology and its use by practitioner, teachers
and students. Chichester: Wiley.

Chujo, H., & Kijima, K. (2006). Soft systems ap-
proach to project-based education and its practice
in a Japanese university. Systems Research and
Behavioral Science, 23(1), 89-106.

Cornford, T., & Smithson, S. (1996). Project re-
search in information systems. MacMillan.

Crnkovic, I., Land, R., & Sjögren, A. (2003,
March). Is software engineering training enough
for software engineers? In Proceedings of the
16th International Conference on Software
Engineering Education and Training, Madrid,
Spain. IEEE.

Denning, P.J. (2005). Recentering computer sci-
ence. Communications of ACM, 48(11), 15-19.

Denning, P.J., & Dunham, R. (2006). Innovation
as language action. Communications of ACM,
49(5), 47-52.

Developer. (2007). Developer: An online maga-
zine for software developers. Retrieved July 12,
2007, from http://www.developerdotstar.com/
mag/categories/systems_software_series.html

Dietrich, Y., Floyd, C., & Klichewski, R. (2002).
Social thinking-software practice. Boston: MIT
Press.

Eom, S. (2000). The contribution of systems sci-
ence to the development of the decision support
systems subspecialties: An empirical investiga-
tion. Systems Research and Behavioral Science,
17, 117-134.

Finnegan, P., Galliers, R.D., & Powell, P. (2002).
Planning electronic trading systems: Re-thinking
IS practices via triple loop learning. In S. Wrycza
(Ed.), Proceedings of the 10th European Con-
ference on Information Systems (pp. 252-261).
Retrieved July 12, 2007, from http://www.csrc.
lse.ac.uk/asp/aspecis/20020114.pdf

Flood, R.L., & Romm, N.R.A. (1996). Diversity
management: Triple loop learning. Chichester:
Wiley.

Glass, R. (2001). Computing failure.com. Upper
Saddle River, NJ: Prentice Hall.

Glass, R. (2005). Never the CS and IS Twain shall
meet? IEEE Software, pp. 120-119.

Glass, R., Ramesh, V., & Vessey, I. (2004). An
analysis of research in computing disciplines.
Communications of ACM, 47(6), 89-94.

Gonzales, R. (2005, March-April). Developing
the requirements discipline: Software vs. systems.
IEEE Software, pp. 59-61.

Hevner, A.R., March, S.T., Park, J., & Ram, S.
(2004). Design science in information systems
research. MIS Quarterly, 28(1), 75-105.

Hirschheim, R., & Klein, H.K. (2003). Crisis
in	the	IS	field?	A	critical	reflection	on	the	state	
of the discipline. Journal of the Association of
Information Systems, 4(5), 237-293.

Holwell, S. (2000). Soft systems methodology:
Other voices. Systemic Practice and Action Re-
search, 13(6), 773-797.

Hughes, J., & Wood-Harper, T. (1999). Systems
development as a research act. Journal of Infor-
mation Technology, 14, 83-94.

330

Information Systems, Software Engineering, and Systems Thinking

IbisSoft. (n.d.). Environment that pro-
motes IS research. Retr ieved July 12,
2007, f rom http://www.ibissoft .se/eng-
lish/index.htm?frameset=research_ frame.
htm&itemframe=/english/about_isenvironment.
htm

Iivari, J., Hirschheim, R., & Klein, H. (2004).
Towards a distinctive body of knowledge for in-
formation systems experts: Coding ISD process
knowledge in two IS journals. Information Systems
Journal, 14, 313-342.

Iivari, J., & Huisman, M. (2007). The relationship
between organizational culture and the deploy-
ment of systems development methodologies. MIS
Quarterly, 31(1), 35-58.

Jackson, M.C. (1992). An integrated programme
for critical thinking in information systems
research. Journal of Information Systems, 2,
83-94.

Jackson, M.C. (2003). Systems thinking: Creative
holism for managers. Chichester: Wiley.

Jackson, M C. (2006). Creative holism: A critical
systems approach to complex problem situations.
Systems Research and Behavioral Science, 23(5),
647-657.

Kroes, P., Franssen, M., van de Poel, I., & Ottens,
M. (2006). Treating socio-technical systems as
engineering systems: Some conceptual problems.
Systems Research and Behavioral Science, 23(6),
803-814.

Kruchten, P. (2005, March-April). Casting soft-
ware design in the function-behavior-structure
framework. IEEE Software, pp. 52-58.

Kuhn, T.S. (1970). The structure of scientific
revolutions (2nd ed.). Chicago: University of
Chicago Press.

Lane, J.A., & Boehm, B. (2007). System-of-
systems cost estimation: Analysis of lead system
integrator engineering activities. Information

Resources Management Journal, 20(2), 23-32.

Laware, J., Davis, B., & Peruisch, K. (2006).
Systems thinking: A paradigm for professional
development. The International Journal of Mod-
ern Engineering, 6(2).

Lee, A. (2000, May). Systems thinking, design
science, and paradigms: Heeding three lessons
from the past to resolve three dilemmas in the
present to direct a trajectory for future research
in	 the	 information	 systems	 field (Keynote ad-
dress). In Proceedings of the 11th International
Conference on Information Management, Taiwan.
Retrieved July 12, 2007, from http://www.people.
vcu.edu/aslee/ICIM-keynote-2000

Lee, A. (2004). Thinking about social theory
and philosophy for information systems. In J.
Mingers & L. Willcocks (Eds.), Social theory and
philosophy for information systems (pp. 1-26).
Chichester: Wiley.

Lee, B., & Miller, J. (2004). Multi-project software
engineering analysis using systems thinking. Soft-
ware Process: Improvement and Practice, 9(3).

Lewis, P. (1995). New challenges and directions
for data analysis and modeling. In F. Stowell (Ed.),
Information systems provision: The contribution
of soft systems methodology (pp. 186-205). Lon-
don: McGraw-Hill.

Linstone, H.A. (1984). Multiple perspectives for
decision making: Bridging the gap between analy-
sis and action. New York: North Holland.

Madachy, R.J. (2006). Integrated modeling of
business value and software processes. Lecture
Notes in Computer Science, 3840, 389-402.

Madachy, R.J. (2007). Software process dynamics.
Wiley/IEEE Press.

Madachy, R.J., Boehm, B., & Lane, J.A. (2007).
Software lifecycle increment modeling for new
hybrid processes. In Software process improve-
ment and practice. Wiley. Retrieved July 12, 2007,
from http://dx.doi.org/10.1002/spip.332

 331

Information Systems, Software Engineering, and Systems Thinking

Mason, R., & Mitroff, I. (1981). Challenging stra-
tegic planning assumptions. New York: Wiley.

Mathieu, R.G. (2002). Top-down approach to
computing. IEEE Computer, 35(1), 138-139.

McLeod, R. (1995). Systems theory and infor-
mation resources management: Integrating key
concepts. Information Resources Management
Journal, 8(2), 5-14.

Mingers, J. (1995). Using soft systems methodol-
ogy in the design of information systems. In F.
Stowell (Ed.), Information systems provision: The
contribution of soft systems methodology (pp.
18-50). London: McGraw-Hill.

Mingers, J. (2001). Multimethodology: Mixing and
matching methods. In J. Rosenhead & J. Mingers
(Eds.), Rational analysis for a problematic world
revisited. Chichester: Wiley.

Mitroff, I., & Linstone, H. (1993). The unbounded
mind. New York/Oxford: Oxford University
Press.

Mora, M., Gelman, O., Forgionne, G., Petkov, D.,
& Cano, J. (2007). Integrating the fragmented
pieces of IS research paradigms and frameworks:
A systems approach. Information Resource Man-
agement Journal, 20(2), 1-22.

Ngwenyama, O.K., & Lee, A.S. (1997). Com-
munication richness in electronic mail: Critical
social theory and the contextuality of meaning.
MIS Quarterly, 21(2), 145-167.

Petkov, D., Petkova, O., Andrew, T., & Nepal,
T. (in print). Mixing multiple criteria decision
making with soft systems thinking techniques for
decision support in complex situations. Decision
Support Systems.

Petkova, O., & Roode, J.D. (1999). An application
of a framework for evaluation of factors affecting
software development productivity in the context
of a particular organizational environment. South
African Computing Journal, 24, 26-32.

Pfleeger,	S.L.	(2001).	Software engineering theory
and practice. Upper Saddle River, NJ: Prentice
Hall.

Pressman, R. (2001). Software engineering: A
practitioner’s approach (5th ed.). New York:
McGraw-Hill.

QAA. (2007). Subject benchmark statements:
Computing. Quality Assurance Agency. Retrieved
July 12, 2007, from http://www.qaa.ac.uk/aca-
demicinfrastructure/benchmark/statements/

Reifer, D. (2003, November-December). Is the
software engineering state of the practice getting
closer to the of the art? IEEE Software, 20(6),
78-83.

Richmond, B. (1994, July). System dynamics/
systems thinking: Let’s just get on with it. In
Proceedings of the 1994 International System
Dynamics Conference, Sterling, Scotland. Re-
trieved July 12, 2007, from http://www.hps-inc.
com/st/paper.html

Saaty, T. (1990). Multicriteria decision making:
The analytic hierarchy process (2nd ed.). Pitts-
burgh: RWS Publications.

Sage, A.P. (2005). Systems of systems: Architec-
ture based systems design and integration (Key-
note address). In Proceedings of the International
Conference on Systems, Man and Cybernetics,
Hawaii.

Sewchurran, K., & Petkov, D. (2007). A sys-
temic framework for business process modeling
combining soft systems methodology and UML.
Information Resources Management Journal,
20(3), 46-62.

Sommerville, I. (2007). Software engineering (8th
ed.). Harlow: Pearson.

Stowell, F. (Ed.). (1995). Information systems
provision: The contribution of soft systems meth-
odology. London: McGraw-Hill.

332

Information Systems, Software Engineering, and Systems Thinking

Stowell, F., & West, D. (1996). Systems thinking,
information systems practice. In Proceedings of
the 40th Conference of the International Society
for Systems Sciences, Budapest, Hungary.

SWEBOK. (2004). Software engineering body
of	knowledge	defined	by	the	IEEE	CS	and	ACM.	
Retrieved July 12, 2007, from http://www.swebok.
org/ironman/pdf/SWEBOK_Guide_2004.pdf

Sweeney, A., & Bustard, D.W. (1997). Software
process improvement: Making it happen in prac-
tice. Software Quality Journal, 6, 265-273.

Ulrich, W. (1998). Systems thinking as if people
mattered: Critical systems thinking for citizens
and managers (Working paper no. 23). Lincoln
School of Management.

Valerdi, R., & Madachy, R. (2007). Impact and
contributions of MBASE on software engineer-
ing graduate courses. Journal of Systems and
Software, 80(8), 1185-1190.

Van Vilet. (2000). Software engineering: Prin-
ciples and practices. Wiley.

Vo, H.V., Paradice, D., & Courtney, J. (2001).
Problem formulation in inquiring organizations:
A multiple perspectives approach. In Proceedings
of the 7th Americas Conference on Information
Systems, Boston, Massachusetts.

Vo, H.V., Chae, B., & Olson, D.L. (2006). In-
tegrating systems thinking into IS education.
Systems Research and Behavioral Science, 23(1),
107-122.

Weinberg, G. (1992). Quality software manage-
ment (Vol. 1: Systems Thinking). New York:
Dorset House Publishing.

Weinberg, G. (2007). A site for books, articles
and courses. Retrieved July 12, 2007, from http://
www.geraldmweinberg.com/

Wendorff, P. (2002). Systems thinking in extreme
programming. In Proceedings of the 10th Euro-
pean Conference on Information Systems (pp.
203-207). Retrieved July 12, 2007, from http://
www.csrc.lse.ac.uk/asp/aspecis/20020124.pdf

White, L., & Tacket, A. (1996). The end of theory?
Omega, 24(1), 47-56.

Wilson, B. (1990). Systems: Concepts, method-
ologies and applications (2nd ed.). Chichester:
Wiley.

Xu, L.D. (2000). The contribution of systems
science to information systems research. Sys-
tems Research and Behavioral Science, 17(2),
105-116.

Yourdon, E. (2007). A site for books, articles and
blogs. Retrieved July 12, 2007, from http://www.
yourdon.com

Zhu, Z. (2006). Complementarism versus plu-
ralism: Are they different and does it matter?
Systems Research and Behavioral Science, 23(6),
757-770.

This work was previously published in International Journal of Information Technologies and Systems Approach, Vol. 1, Issue
1, edited by D. Paradice and M. Mora, pp. 62-78, copyright 2008 by IGI Publishing (an imprint of IGI Global).

