

Exploring The Behavior Of In-Situ Polymerised Ionogel **Thermal Actuators**

Simon Gallaghera, Andrew Kavanagha, Larisa Floreaa, Katya Izgorodinab, Kevin Frasera, Douglas MacFarlaneb, Dermot Diamonda. ^a CLARITY, National Centre for Sensor Research Dublin City University, Glasnevin, Dublin 9, Ireland

^b School of Chemistry, Monash University, Wellington Rd, Clayton, 3800, Australia.

INTRODUCTION

- Poly-(N-isopropylacrylamide) (pNIPAM) is a thermo responsive polymer gel that displays an inverse solubility of aqueous solutions upon heating above its Lower Critical Solution Temperature (LCST).
- Below the LCST, the gel becomes solvated by water molecules through hydration of aliphatic groups and hydrogen bonding with the amide group.
- Above the LCST $(31 32 \, ^{\circ}\text{C})^{1}$, the gel collapses along the polymer backbone before water molecules are expelled. This process is driven by the conversion from polymer-solvent bonds to polymer-polymer and solvent-solvent bonding.2
- Ionic liquids (ILs) / ionogels have evolved as a new type of material for actuators, mainly due to their unique and tunable physical properties.[1]

AIMS

- To investigate the physicochemical interactions that occur between A) IL B) Water C) Polymer as a result in a change in temperature .
- Examine the macro actuator effect as a result of these interactions

EXPERIMENTAL

ILs of interest in this study are; 1-ethyl-3-methylimidazolium ethyl sulfate $[C_2mIm][EtSO_4]$ and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonylimide) [C₂mIm][NTf₂] (Figure 1).

Poly(N-isopropylacrylamide)-co-N,N

Fig 1: Ionic Liquids of interest and repeating unit of the polymer

- The thermo-physical properties of these pure water-saturated ILs were investigated using density, viscometry, and rheometry.
- All measurements were performed in temperature range corresponding above and below the LCST (20 - 35 °C).
- Storage modulus was measured using an Anton-Paar MC301 rheometer, where the temperature was ramped 5 °C / min above and below the LCST of the ionogel.
- Hydrated gels were gold sputtered using a Polaron® SC7640 Auto/ Manual High Resolution Sputter coater, and SEM measurements were performed on a ZEISS ® microscope instrument.

RESULTS AND DISCUSSION

Swelling and contracting properties of the ionogel were found to differ depending on the variation and hydrophobicity of the anion.

- Benito-Lopez, Fernando and Byrne, Robert and Raduta, Ana Maria and Vrana, Nihal Engin and McGuinness Garrett and Diamond Dermot (2010) Lab on a Chip, 10 (2). pp. 195-201.
- H.G Shild, Prog. Polym. Sci., Vol. 17, 163-249, 1992

RHEOMETRY

Storage modulus, measuring the elastic energy of the hydrated gel.

- ullet Clear difference observed between the storage modulus of $[C_2mlm][EtSO_4]$ and [C₂mIm][NTf₂] ionogels when passed through the LCST threshold.
- At the phase transition, when the polymer backbone of pNIPAM collapses and expels water, the hydrophilic [C₂mIm][EtSO₄] leaves with the expelled water, producing a more compact, condensed and stiffer gel.

ACTUATION

Actuation properties of ionogel are found to differ according to anion hydrophilicity.

IL	LCST (°C)	Diameter (mm)	Hydration diameter mm (% change)	Contraction diameter mm (% change)
[C ₂ mIm][EtSO ₄]	24	12.00	15.7 (30.42)	11.2 (28.47)
[C ₂ mIm][NTf ₂]	24	12.00	13.8 (15.83)	11.8 (13.67)

Viscosity values measured were found to correlate with previous actuation measurements.

	IL	IL viscosity 20 °C m.Pas	Viscosity of IL/Water below LCST m.Pas (% change)	Viscosity of IL / Water above LCST m.Pas (% change)
[0	C ₂ mIm][EtSO ₄]	93.60	3.43 (96.33)	2.42 (97.40)
[C ₂ mlm][NTf ₂]	32.49	23.93 (26.34)	12.78 (60.60)

SEM

Shows polymer networks only in the hydrated phase (a & b)

[C2mlm][EtSO4] display distinct porous morphology in both states (c) dry and hydrated (d) states. It shows the hydrophobicity of the anion has effect on the formation of the polymer network.

- The storage modulus of the ionogels are found to change significantly according to the hydrophobicity of the anion.
- The actuation properties of the ionogels correlate with the trend of viscosity values of the ILs when saturated with water.
- SEM images clearly display differences between ionogels when dry and when submerged in water.
- It is clear that the nature of the IL employed dictates the actuation properties of the ionogel.