Business Model Driven Service Architecture
Design for Enterprise Application Integration

Veronica Gacitua-Decar and Claus Pahl

School of Computing, Dublin City University, Dublin 9, Ireland.
vgacitual|cpahl@computing.dcu.ie

Abstract. Increasingly, organisations are using a Service-Oriented Ar-
chitecture (SOA) as an approach to Enterprise Application Integration
(EAI), which is required for the automation of business processes. This
paper presents an architecture development process which guides the
transition from business models to a service-based software architecture.
The process is supported by business reference models and patterns.
Firstly, the business process models are enhanced with domain model ele-
ments, application architecture elements and business-level patterns. Af-
terwards, business reference models and patterns are exploited for iden-
tification of software services and their dependencies. The subsequent
activities are focused on the transformation of the enhanced business
processes toward a service-based architecture that solves the application
integration problem.

Key words: Service oriented architecture, enterprise application inte-
gration, business process management, reference model, business pat-
terns, software architecture patterns.

1 Introduction

Business process management (BPM) aims to improve productivity, product
quality, and operations of an enterprise [1I]. BPM encompasses methods, tech-
niques, and tools to support the analysis, design, implementation and governance
of operational business processes [2]. Software applications are built or acquired
to provide specialized functionality required by business processes. If new activ-
ities and applications are created and integrated into existing business processes
and infrastructures, new architecture and information requirements need to be
satisfied. Enterprise Application Integration (EAT) aims to link separate applica-
tions into an integrated system supporting the operation of business processes [3].
Increasingly, enterprises are using Service-Oriented Architectures (SOA) as ap-
proach to EAT [4]. SOA has the potential to bridge the gap between business and
technology, improve reuse of existing applications and interoperability with new
ones. Software services can be composed to provide a more coarse grained func-
tionality and to automate business processes [5]. However, if new applications
are often created without a structured architectural design, integrating these
into a coherent architecture closely aligned with the business domain becomes a


vgacitua|cpahl@computing.dcu.ie

2 Veronica Gacitua-Decar and Claus Pahl

significant challenge. On top of specific architectures, architecture abstractions
such as reference models, patterns, and styles have been used to allow reuse
of successfully applied architectural designs, improving the quality of software
[6, [7]. The continual rise of abstraction in software engineering approaches is a
central driver of this work, placing the notion of patterns at business domain
and focusing on its subsequent transformation to a software architecture.

The main contribution of this paper is a software architecture approach which
provides a tractable and consistent transition from business models to software
service architectures.

— The architecture approach is structured in layers. They separate aspects and
aid with the maintainability of the architecture. Explicit connections between
elements of different layers provide advantageous traceability characteristics,
essential for change management. A modelling technique capturing the layered
architecture provides coherence between business models and the software ar-
chitecture. Standardized notation at business and software level [8,[9] promotes
a broad use of the approach.

— A potential fully automated architecture development process is presented.
Automation encourages reduction of human errors and an increase in the
quality of products. Three core activities are performed along the process:
modelling, identification and transformation.

— Along the process, architecture abstractions such as reference models and
patterns are exploited for identification of software services and their depen-
dencies. A derived advantage of incorporating architecture abstractions is the
positive contribution over the maintainability of the architecture. Patterns are
aside of the architecture and remain valid as long as no large changes occur at
business and application level. Another advantage of our approach is its inde-
pendence of commercial infrastructure. Large software providers offer support
for service-centric solutions based on their own reference architectures, often
dependant on technology.

This article is structured as follow. Firstly, a layered architecture structur-
ing application integration problem and the required architectural concepts are
presented in section 2. Section 3 introduces a case study and explains the lay-
ered architecture development process. Section 4 discusses our approach. Related
work and conclusions are presented in sections 5 and 6 respectively.

2 Layered Architecture

A software architecture is the design of a system describing its design elements,
their organisation, allocation and collaboration, and also it characterizes the
behaviour of the system [I0]. Architecture abstractions, such as patterns, con-
strain the design elements and their relations and can be distinguished on top
of specific architectures.

This paper uses a layered architecture to structure the application integra-
tion problem. An incremental transformation from models at business level to a



Business Model Driven Service Architecture Design for EAI 3

service architecture is done using business reference models and patterns. Note
that business process modelling, domain modelling and service development are
activities outside the scope of this paper. However, they are framing our ap-
proach. Fig. [1|depicts the architecture layers, their elements and complementary
architectural concepts are utilized in this paper.

Business
Reference
Models
+

Domain Model B“Slnﬁss
Entities Modelling

Layer
(BML)

Process Model
Activitie
participants, cvents

Patterns

Application

Infrastructure Architecture
applications Layer

(AAL)

Business
applications

Business-
Application
Intermediate
Layer
| (BAIL)

i

Enhanced Process Model
Activities, participants, events, entities and business applications

—_— Service
L Architecture
Patterns Technical services Layer

(SAL)

iness service:
SOA Business services

Fig. 1. Layered architecture structuring the EAI problem.

2.1 Architecture Abstractions

The incremental transformation from business models to a service architecture is
realised with the help of architecture abstractions such as reference models and
patterns. Architectural abstractions are exploited for identification of software
services and their dependencies.

Business Reference Model. According with [I0] a reference model is a
standard decomposition of a know problem into parts that cooperatively solve
the problem. They arise from experience and together with architectural patterns
can constitute reference architectures. A business reference model is a standard
decomposition of the business domain, normally provided by standardization
organizations. We use reference models as medium to identify business services.

Business and SOA Patterns. In the software domain, architectural and
design patterns are common abstractions on top of specific architectures. Pat-
terns have been broadly adopted as a medium to reuse architectural design
knowledge and improve quality of software [0l [7]. Design patterns [6] are consid-
ered as micro-architectures solving recurring design problems contributing to the
overall system architecture. SOA patterns solve design problems in the context
of service oriented architectures. Some influential efforts such as [I1I] focus on
patterns as abstractions capturing and describing business modelling problems
and their corresponding solutions so that the solutions can be reused. Similarly
to the work presented in [II] and [6], we consider business patterns as micro-



4 Veronica Gacitua-Decar and Claus Pahl

models solving recurring business problems contributing to the overall business
model.

2.2 Layers

The layers of the architecture are the Business Modelling Layer (BML), the Ap-
plication Architecture Layer (AAL) and the Service Architecture Layer (SAL).
An intermediate layer (BAIL) containing enhanced process models is also con-
sidered. Layers separate involved aspects of the integration application prob-
lem, improving the maintainability of the architecture [I0]. Explicit connections
between layer elements provide beneficial traceability characteristics to our ap-
proach, essential for change management.

Business Modelling Layer (BML). The BML constrains and drives the
integration of software applications. It has two main models: the business pro-
cess model and the domain model. While business process models capture the
dynamics of the business, domain models capture structural relations between
business concepts. Among process modelling notations, Business Process Mod-
elling Notation (BPMN) [§] has been incrementally adopted over the last few
years. We have adopted BPMN as notational basis for business models and their
transformation to a service architecture. We have also adopted class diagrams
of UML 2.0 [9] for domain modelling due to their suitability for our approach.

Application Architecture Layer (AAL). This layer constitutes the tech-
nical scenario of the integration application problem and acts as architectural
constraint for technical service definition and composition. AAL has either and
inter- and intra- organizational scope, since business processes can span across
organizations. In order to define applications in architectural terms (and subse-
quently software services), we borrow the component and connector view from
[12]. This view defines a system as a set of components. Each component has
a set of ports modelling its interfaces, which enables the interaction with other
components through connectors. We adopt the notation of component diagrams
of UML 2.0 [9] for models in this layer.

Business-Application Intermediate Layer (BAIL). In this layer, process
models are enhanced with elements of the domain model and applications. Cre-
ation of models in the BAIL is the first step toward the development of the service
architecture. The notation used is inherited from the previous layers (UML 2.0
and BPMN).

Service Architecture Layer (SAL). SAL is a container of software services
structured in a service architecture. Software services, called only services in the
rest of the paper, are software components capable to of performing a set of
offered tasks. Services might delegate their responsibility of performing tasks to
other services or applications and they can be composed to provide a more
coarse grained functionality. In this paper we discriminate between business



Business Model Driven Service Architecture Design for EAI 5

and technical services. Business services abstract activities or business entities
from the BML into the SAL. Technical services abstract functionality and data
provided by the AAL into the SAL, as well as, functionality required to manage
technical issues such as security, messaging, etc. We adopt the UML 2.0 notation
for components diagrams [J] for representing services and their connections.

3 Layered Architecture Development Process

Development of service architectures requires consideration of business and tech-
nical aspects. We follow an intermediate approach using elements from the busi-
ness and application layers as starting point for the development of the service
architecture. The aim is to provide an EAI approach which maintains coherence
between the business domain and its supporting software. The layered architec-
ture development process has the potential of been fully automated. A modelling
technique capturing the layered architecture provides coherence between busi-
ness models and the resultant software architecture. Along the process, architec-
ture abstractions are exploited for identification of software services and their
dependencies. Incorporation of architecture abstractions contributes positively
over the maintainability of the architecture, since they are aside of the service
architecture and remain valid while no large changes occur at the business and
applications level.

3.1 Case Study

The case study involves a billing and payment process representing a typical
process where consumers and businesses (C2B) interact. Fig. |2 shows the high
level business process. Three participants (roles) are exhibited at this level, cus-
tomer, banks network and utility company. Periodically, a utility company bills
their customers with an amount of money corresponding to the consumption
of delivered services. Customers receive their bills and decide the payment. A
paymentﬂ on the date due will eliminate the debt of the customer, otherwise the
debt is accumulated. Remittance information is sent by the bank’s network to
the customer and the biller after the payment transaction is completed.

3.2 Description of Development Activities

The main activities of the development process are: modelling, identification and
transformation. Modelling activities enhance models from one layer adding new
elements and relations to the models in the same layer or anther layer. Identi-
fication activities are performed to identify business and technical services; and
also to identify suitable business reference models and patterns. Transformation
activities apply a set of rules to transform an original model in a new model
which incorporates components emerged during the identification activities.

! For the sake of simplicity this example shows only a bank transfer as a medium of
payment.



6 Veronica Gacitua-Decar and Claus Pahl

O

] ;

= paynfent? —— |

3 il 43 »ﬁ(_ J pay bil - receive

E arrive L D> receipt
order receipt

payment artive

R | o
A Transfer send
) » o
3 @ Money ! receipt
payment :

- order

remittance 1
alert (

liquidate
debt

receive
payment

. payment
or N\
deadine?

7 prepre. W
© debt

deadline

payment

3 (@] generate bil sendbill | .

time

Utility C:

to
collect

Fig. 2. Billing and payment process.

3.3 Development Process

The presented development process is a systematic approach for designing
service-centric solutions for EAI It consists of a set of activities structuring in-
formation from the business and IT sides of an enterprise. External information
from the business and software community is also added in the form of business
reference models and patterns. Process participants can be related with common
roles of the IT industry. Business analysts or enterprise architects are suitable
for business modelling and business services definition. Software architects are
suitable for modelling at AAL, BAIL or SAL. Figl3] depicts the development
process. Numerated activities are briefly explained in the rest of this section.

Business Model Analysis and Augmentation.

Step 1. At the beginning of the development process the business process
models are enhanced with elements of the domain model and business applica-
tions. Firstly, the high level process model is decomposed into lower level ac-
tivities. Subsequently, domain model elements are related with the lowest level
activities and applications manipulating those domain elements are added. Fig.
[] shows an example of the enhanced process model for the generate invoice
activity, which belongs to the high-level process model of Fig.

Step 2. This activity is mainly human centric, and involves the identifica-
tion of an appropriate business reference model and business patterns. Business
reference models facilitate the recognition of reusable portions of the business
model, setting boundaries for definition of reusable business services. Addition-
ally, business patterns provide information for early identification of dependen-
cies between services. We have selected the electronic bill presentment and pay-
ment (EBPP) reference model for the case study. It was published by NACHA,
which represents more than 11,000 financial institutions [I3]. Based on EBPP,
we realise that a process participant is play-ing the role of mediator. Specifically,



Business Model Driven Service Architecture Design for EAI 7

o B Development Activities Business
Business .
Modelling
F T T e
Modele & [T D -M Modelling Layer
Business Process and I (BML)
Patterns Domain Models [ | tdentfcation
-ansformation
) ﬁ D ,,,,, N Application
Business Infrastructure Architecture
Applications Applicgtions Layer
(AAL)
Model Andlysis and As ti Business:
ress Mode :\ Xms and Augmentation Application
I3 Intermediate
L1 Layer
(BAIL)
. S0A Sdrvice Service Architecture Enhancement Service
atterns i
» T | Architecture
D 1] Layer
; - (SAL)

Services

Fig. 3. Layered architecture development process

Utility Company

Biller::CRM
CustomerData

g CustomerDeal
= Domain Objects:
| Customer -

Y Domain Objects é_/)
”””””” Debt

Biller::Billing_Application
CustomerBillingInfo
CurrentDebt

InvoiceData
InvoiceDocument

ConsumptionLocation

Get
Customer
Billing Info

Get Old Debt

Get Current
Deht

Biller: Meter Application

CansumptionLocation

Calculate Custormer
Debt to Inwoice @
Biller:ERP
|AccumulatedCustomerDebt

GenerateBilllnfo

Fig. 4. Generate invoice activity with elements of the domain model and applications.

we identify a customer service provider mediating between customers and the
utility company. This relation is analogous to the mediator pattern from [6]. The
relation is illustrated in Fig.

Step 3-4. These two steps involve modelling and transformation activities.
They are performed to convert business layer models into models including ele-
ments and relations from business patterns. Fig. [6] shows an example where the
Customer Service Provider element and the mediator and colleague elements
were added to the original domain model after incorporation of the mediator
pattern (see Fig. |5)).



8 Veronica Gacitua-Decar and Claus Pahl

-mediator|
Coteagus
i i

-mediator
Coleague
i il

7 Customer Service :
ConcreteMedlalorl%|00ncreteCuHeagu91 ConcreteColleague? ﬂ Customer Eiller

Provider

+ Presentment()

1

Fig. 5. The mediator pattern and analogy within the billing and payment model.

Account ClientBank Custormer

- AccountMumber: int - Account_Array: array - Mame: string
- ClientBankName: string [ - - Address: string

1
- AccountType: int + OrderPayment(] Patterns: Colleague

- Cunency: string

Biller CustomerBiller

+ Generale_lmwice() ; Imvaice W HbEEsE

+ Send_lnvoice() : boolean $

. | Fatterns Med‘r'azml

Debt

- itemn_debt: int
- Ammount: int
- MonetaryUnit: string
- period: string

Pattems:: Customer
Service Provider

1
+ Presentrment()

Fig. 6. Extract of domain model for billing and payment model.

Service Identification and SOA Modelling.

Step 5. At this stage services are identified. This activity involves decomposi-
tion of the overall integration problem, starting at business level, to subsequently
considers architectural constrains imposed by applications. Service design princi-
ples [4] such as loose coupling, abstraction, reusability, autonomy, among others
are considered. Based on the EBPP reference model, bill creation, presentment
and payment processes were considered to be exposed as business services. Since
customer is a central concept, we also identify the customer business service.
Customer service abstracts the information of customers from different data
sources in the biller side. Sources include a customer relationship management
(CRM) application; an enterprise resource planning (ERP) application; and two
custom built applications -billing and metering-. Transfer money activity of Fig.
[2]is decomposed in three main activities: the initial payment from the customer
side, the clearing activity which manages taxes and other charges for transactions
between financial institutions, and the final settlement activity. Based on the lat-
ter, we define three more fined grained services composing the payment service:
pay service, clearing service and settlement service. Two technical services -tariff



Business Model Driven Service Architecture Design for EAI 9

Fig. 7. Generate bill activity with elements of the domain model, applications and
services.

€ ]
Bl Mt Apghcatn
O—1{ consumptiontocation
OficxaiTant a
Biller::ERP
Ghciatantt
O:Q—‘

Fig. 8. Software architecture with services and applications.

and meter services- are derived for abstracting the tariff rules embedded into the
ERP application, and the information about customer consumption managed by
the meter application.

Step 6. This step incorporates services identified in the previous step into the
enhanced process model. An example is shown in Fig. [7} where services and their
dependencies are added into the model of Fig.[4] Note that service dependencies
reduce the space of possibilities for service composition to the context provided
by the BAIL.

Step 7. In this activity the enhanced process model is transformed towards
a software architecture with services and applications. Dependencies between el-
ements of the BML and AAL are hidden. Subsequently, elements of the BML are
also hidden. Fig. [8|shows the resultant software architecture after transformation
of the process model of Fig. [7]

Service Architecture Enhancement.



10 Veronica Gacitua-Decar and Claus Pahl

1117

Fig. 9. Service-centric architecture with business and infrastructure applications.

Step 8-10. These three steps focus on the identification and incorporation
of applicable SOA patterns for service architecture implementation. When im-
plementing a service architecture, specific components supporting aspects such
as service invoking, com-position, security, among others facilities are required.
After identification activities, elements of SOA patterns are actually modelled
into the service architecture. Trans-formation activities provide consistency to
the final service architecture. In the case study for example, technical services in
the biller side might be implemented based on the enterprise service bus (ESB)
pattern [I4], which facilitates exposition of software components on a centralized
bus and handles messaging between services, among other facilities.

Step 11. In order to implement the previously incorporated SOA patterns,
identification of concrete software infrastructure is required. For instance, the
ESB pattern mentioned in the previous step could be implemented with concrete
commercial ESB infrastructure.

Step 12. At this stage, the identified infrastructure and required connections
are modelled into the AAL. Fig. [9] (left side) shows the ESB component added
to the architecture of Fig. |8l Note that redundant relations could appear after
inclusion of infrastructure elements.

Step 13. The last step of the development process generates a service-centric
architecture where redundant relations appeared in the previous activity are
hidden. Fig. | (right side) shows the resultant architecture after hiding redundant
relations.

4 Discussion

Service-centric architectures have received considerable attention over the last
few years. However, the focus has been mainly on improving technological in-
frastructure and run-time issues [I5]. Design-time aspects for development of
service architectures have received less consideration. Practical work, indicates
that successful implementations of service oriented solutions in enterprises re-
quire systematic approaches and maintainable architectures as outcomes [4].



Business Model Driven Service Architecture Design for EAI 11

In this paper we provide an architectural approach which provides a service-
centric solution for EAI. Coherence between business levels and the software
architecture was demonstrated through a case study. Potential automation of
activities in the development process was illustrated by means of a structured and
guided step by step process, with modelling, identification and transformation
activities.

Maintainability is implicitly demonstrated by means of the traceability char-
acteristics provided by explicit connections between elements of the layered ar-
chitecture. In order to evaluate modifiability, Architecture-Level Modifiability
Analysis (ALMA) [I6]can be used. ALMA analysis includes change scenario elici-
tation, evaluation and interpretation. Likely change scenarios come from changes
in business processes, domain models and applications. Changes in process and
domain models are expressed in terms of creation or elimination of elements and
connections in the intermediate layer (BAIL). Mayor changes in process models
can affect the definition of business services. Reference models would assist the
identification of new business services. Changes in elements of the AAL directly
affect the definition of technical services. Those changes might involve adapta-
tion of the implementation of business services. Despite the different nature of
the changes, the explicit connections between elements in all layers make trace-
able those alterations. This characteristic in our approach contributes positively
to the modifiability of the final service-centric software solution.

The architectural approach presented in this paper has emerged from empir-
ical work, together with the analysis of a wide rage of systems and methods for
development of large scale systems. The authors have been involved in service
based solutions projects for mining, governmental and e-learning domains, where
coherence between business and software, and maintainability of architectures
were key aspects.

5 Related Work

Methodologies such as the presented in [20] and [5] provide a similar guide for
building service centric architectures. We go beyond, incorporating modelling
support for preserving coherence between business and software aspects. We
also incorporate architectural abstractions enhancing maintainability character-
istics of the final software solution for EAL In [I4] the authors use patterns and
patterns primitives for process-oriented integration of services, however patterns
are at service composition level. This kind of patterns might be included as SOA
patterns during the last activities of our presented development process. In [20]
service identification is driven by analysis of use cases. We use business reference
models for decomposition of the business domain, abstracting the identification
of services from a particular snapshot describing a temporal situation of the
business. Note that selected reference models in our approach are application
independent. Software companies can also provide business service definitions
based on reference models, however they often relate this definition to their own
software applications offer, e.g. [21I]. Authors in [I5] introduces a framework with



12 Veronica Gacitua-Decar and Claus Pahl

reusable architectural decision models as design methodology for service realiza-
tion. Architectural decisions in our approach, such as the election of a particular
reference model or patterns can be complemented with the framework provided
in [15].

6 Conclusion

Methodologies for EAI based on SOA are still maturing. In practice, most ap-
proaches start from the application level to afterwards adjust their designs to
business levels.

In this paper we have presented an architectural approach for designing
service-centric solution for EAI. Our approach is driven by models at business
level and take into account the constraints imposed by applications. Coherence
between business models and its supporting software was provided by mod-
elling techniques. The used modelling notation provided graphical support and
consistency inherited from modelling languages. Business reference models and
patterns were used for guiding the identification of software services and early
recognition of dependencies between services.

Some of the Activities of the layered architecture development process as
the potential of been automated. Automation of transformation activities shall
increase quality of products, since human centric errors would avoid. Automa-
tion of pattern identification would reduce analysis time, helping specially to
neophyte architects and business analysts. Our future work includes automation
of transformation and identification activities. Graph based formalization shall
give the basis for consistency.

References

1. Lee, R.G. and Dale, B.G.: Business process management: a review and evaluation.
BPM J., 4, 214-225. (1998)

2. van der Aalst, W.M.P., ter Hofstede, A.H.M., and Weske, M., Business Process
Manage-ment: a survey. In: van der Aalst, W.M.P., et al., (eds.) Int. Conf. on BPM
2003. LNCS, vol. 2678, pp. 1-12. Springer, Berlin (2003)

3. Hohpe, G. and Woolf, B.: Enterprise integration patterns. Addison-Wesley (2004)

4. Erl, T.: Service-oriented architecture: Concepts, Technology, and Design. Prentice
Hall (2004)

5. Papazoglou, M.P. and van den Heuvel, W.J.: Service-Oriented Design and Develop-
ment Methodology. Int. J. of Web Engineering and Technology (IJWET), 2, 412—
442. (2006)

6. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

7. Monroe, R.T., Kompanek, A., Melton, R., and Garlan, D.: Architectural Styles,
Design Pat-terns, and Objects. IEEE Software, 14, 43-52. (1997)

8. Business Process Modeling Notation Specification 1.0. BPMI - OMG (2006)

9. Unified Modeling Language: Superstructure. Version 2.1.1. OMG (2007)



Business Model Driven Service Architecture Design for EAI 13

10. Bass, L., Clements, P., and Kazman, R.: Software Architecture in Practice.
Addison-Wesley (2004)

11. Eriksson, H.-E. and Penker, M.: Business Modeling with UML: Business Patterns
at Work. John Wiley and Sons, Inc. (1998)

12. Garlan, D. and Schmerl, B., Architecture-driven Modelling and Analysis. In: Cant,
T., (ed.) SCS’ 06. ACM Int. Conf. Proc. Series, vol. 248, pp. 3-17. Melbourne,
Australia (2006)

13. NACHA - The Electronic Payments Association, http://www.nacha.org

14. Zdun, U., Hentrich, C., and Dustdar, S.: Modeling process-driven and service-
oriented architectures using patterns and pattern primitives. ACM Trans. Web, 1,
14. (2007)

15. Zimmermann, O., Koehler, J., and Leymann, F.: Architectural Decision Models
as Micro-Methodology for Service-Oriented Analysis and Design. In: Lbke, D. (ed.)
SEMSOA 2007. Hannover (2007)

16. Bengtsson, P., Lassing, N., Bosch, J., and van Vliet, H.: Architecture-level modi-
fiability analysis (ALMA). J. of Systems and Software, 69, 129-147. (2004)

17. C. Pahl. A Formal Composition and Interaction Model for a Web Component
Platform. ICALP’2002 Workshop on Formal Methods and Component Interaction.
Malaga, Spain. Elsevier. Electronic Notes in Theoretical Computer Science. 2002.

18. C. Pahl and Y. Zhu. A Semantical Framework for the Orchestration and Chore-
ography of Web Services. International Workshop on Web Languages and Formal
Methods WLFM’05. Newcastle upon Tyne, UK. Elsevier ENTCS Series. 2005.

19. C. Pahl, S. Giesecke and W. Hasselbring. An Ontology-based Approach for
Modelling Architectural Styles. In European Conference on Software Architecture
ECSA2007. Springer-Verlag, LNCS Series, 2007.

20. Arsanjani, A.: Service-oriented modeling and architecture, http://www-
128.ibm.com/developerworks/webservices/library /ws-soa-designl/

21. Enterprise Services for Electronic Bill Presentment and Payment
https://www.sdn.sap.com/irj/sdn/wiki?path=/display /ESpackages/Home



	Business Model Driven Service Architecture Design for Enterprise Application Integration
	Veronica Gacitua-Decar and Claus Pahl
	Introduction
	Layered Architecture
	Architecture Abstractions
	Layers
	Business Modelling Layer (BML).
	Application Architecture Layer (AAL).
	Business-Application Intermediate Layer (BAIL).
	Service Architecture Layer (SAL).


	Layered Architecture Development Process
	Case Study
	Description of Development Activities
	Development Process
	Business Model Analysis and Augmentation.
	Service Identification and SOA Modelling.
	Service Architecture Enhancement.


	Discussion
	Related Work
	Conclusion
	References



