Model-Driven Performance Evaluation for Ser-
vice Engineering

Claus Pahl, Marko Boskovi¢ and Wilhelm Hasselbring

Abstract. Service engineering and service-oriented architecture as an integra-
tion and platform technology is a recent approach to software systems inte-
gration. Software quality aspects such as performance are of central impor-
tance for the integration of heterogeneous, distributed service-based systems.
Empirical performance evaluation is a process of measuring and calculating
performance metrics of the implemented software. We present an approach
for the empirical, model-based performance evaluation of services and ser-
vice compositions in the context of model-driven service engineering. Tempo-
ral databases theory is utilised for the empirical performance evaluation of
model-driven developed service systems.

Mathematics Subject Classification (2000). Primary 99Z99; Secondary 00AQO.

Keywords. Service-oriented Architecture, Model-Driven Development, Perfor-
mance Evaluation, Instrumentation.

1. Introduction

The complexity of software makes its development costly and error-prone. Model-
driven engineering (MDE) is an approach to deal with complexity by making soft-
ware models primary artefacts of the development process. A model is closer to
the problem domain than to the underlying implementation. Therefore, it moves
the focus of software engineering from technology-specific implementation to the
problem domain. MDE utilises two aspects of models. Firstly, complete imple-
mentations can be generated from models, but more importantly here, predictions
about a software system can be made based on a model. A fully model-based ap-
proach hide code-level details and allows a software architect to concentrate on
design-stage artefacts.

2 Pahl, Marko Boskovi¢ and Wilhelm Hasselbring

To provide trustworthy software, quality attributes [4] have to be satisfied.
Quality aspects have not been addressed in sufficient depth in the context of het-
erogeneous, distributed, service-based systems. Service engineering and service-
oriented architecture as an integration and platform technology is a recent ap-
proach to service-based software system integration. Performance as one of quality
attributes, defined as a degree to which a software system meet its objectives for
timeliness [5], is of central importance in this context.

At present, research in model-driven performance engineering is mostly dedi-
cated to simulation and performance prediction with mathematical analysis meth-
ods [6, 7]. Nevertheless, predictions have to be validated when a software system
is implemented and deployed. Validation should be based on modelling constructs
as predictions are made according to them. Currently, timing behaviour is ana-
lyzed based on source code constructs (e.g., method execution time). In MDE,
the level of abstraction is raised. Consequently, observations should be based on
modelling constructs, such as components and their states, activities, interactions
or methods.

In software engineering, instrumentation is the process of adding software
probes to the program [5]. Software probes are additional pieces of code for col-
lecting data about the software execution. A model-based language for instrumen-
tation needs to be derived. Instrumentation languages can enforce data collection
in relational manner.

We investigate the empirical performance evaluation of model-driven service-
based systems. We focus on composed (or orchestrated) services processes and
address their performance behaviour. We present work-in-progress that comprises:

e an instrumentation notation for service models that allows specific service
model elements such as services or composition and flow operators to be an-
notated and marked as providing performance-relevant time information at
execution time. We use UML activity diagrams to express service composi-
tions and base our instrumentation language on this UML diagram format.
Our work follows others in using UML beyond classical software design. The
Erickson-Penker Business Extensions for UML [2] for instance permits UML
to document an entire business enterprise.

e model-driven transformation techniques that generate executable code in-
cluding the monitoring instructions necessary to record time information.

e a trace analysis query language. This language provides the ability to calcu-
late performance metrics such as response time and throughput. The eval-
uation is based on temporal databases theory [8]. The temporal databases
theory relates facts stored in a relational manner with time information. A
relational trace is a dynamic list of events and timing information generated
by the program as it executes [9]. A query language allows the evaluation
based on the traces in terms of service model elements.

Empirical code-level instrumentation and analysis has been investigated in depth.
Simulation and analytical models have been used to provide support at design

Model-Driven Performance Evaluation 3

stages of the development process. Our contribution represents a novel approach
for the empirical, model-level evaluation of performance for service-based software
systems that

e firstly, an empirical and, thus, ultimately more accurate and reliable tech-
nique than simulation and analysis,

e secondly, a fully model-based evaluation technique for the architect that hides
code-level details.

The paper is structured as follows. The next section gives an overview of
model-driven engineering and service engineering. Motivation and foundations of
performance engineering are presented in Section 3. Section 4 introduces the in-
strumentation language. Performance monitoring through code generation and
instrumented execution is described in Section 5. The analysis of evaluation data
is discussed in Section 6. Related work is discussed in Section 7 and Section 8
concludes the paper.

2. Model-Driven Development and Service Engineering

The general idea of model-driven engineering (MDE) is to introduce a model as
a first-class entity. With models, the development focus is moved to the problem
domain. Models often enable the exploitation of formal methods. With abstrac-
tion, the understanding of the problem and its realization can be improved. Of-
ten, a complete implementation can be generated [10]. Model Driven Architecture
(MDA) [11] is one approach for MDE initiated by the Object Management Group
(OMG), a consortium of software vendors and users. MDA is based on three ideas:
direct representation to shift the focus of software development away from technol-
ogy toward the problem domain, automation to mechanize the relation of semantic
concepts of problem domain and implementation domain, and open standards to
enable interoperability to close the semantic gap between domain problems and
implementation technologies. Our aim is to enable the evaluation of service per-
formance when the primary artefact is a service (or service process) model.

A service is defined as a piece of software, whose public interfaces are defined
and described using an interoperable format. Other systems can interact with the
service in a manner prescribed by its definition. The composition of services to
orchestrated processes is a major concern in current Web service research [12,
13]. These recent developments have strengthened the importance of architectural
questions such as service composition.

Modelling can support these architectural questions. Behaviour and interac-
tion processes are central modelling concerns for service-based software architec-
tures. Fig. 1 illustrates how a UML activity diagram can be used to express a
service orchestration — at an abstract level without addressing individual service
providers. Four services that provide an online bank account facility login, bal-
ance, transfer, and logout are orchestrated into a process starting with a login,

4 Pahl, Marko Boskovi¢ and Wilhelm Hasselbring

{user,account} {sessionID void}
L] H (| oo [e
{sessionID}

destination,
amount}

FIGURE 1. Service Process modelled using a UML activity diagram.

then allowing a user to iteratively choose between balance enquiries and money
transfers, before logging out.

Explicit models enable developers and clients of services to create reliable
service architectures using tool support. A model-driven development approach
can even support automated code generation and performance analysis. Assuming
that concrete, provided services are already attached to each service element, then
an executable WS-BPEL process for the Web service platform can be generated. As
we are going to demonstrate, the service composition model can be instrumented
for empirical performance analysis and executable processes including performance
monitoring functionality can be generated.

3. Performance Evaluation

3.1. Software Performance, Evaluation and Motivation

Performance is considered as the degree to which a software system or compo-
nent meets its objectives for timeliness [5]. It can be evaluated with simulation,
analytical modelling or empirically [9]:

e Simulation is an imitation of a program execution focusing on specific aspects.
It is less expensive than building a real system for empirical evaluation. It
is flexible as changes can be dealt with easily if the simulation is derived
automatically. However, simulation can suffer from a lack of accuracy.

e Analytical modelling is a technique where a system is mathematically de-
scribed. Results of an analytical model can be less accurate than real-system
measurements. However, analytical models are often easy to construct.

e Empirical evaluation is performed by measurements and metrics calculation.
They provide the most accurate results as no abstractions are made.

The downside of performance evaluation by implementation, however, includes
hardware dependency, extra cost of creating a prototype and deploying it, imple-
mentation deficiencies, and challenges in representative workload creation. Two
observations led us to consider model-based empirical evaluations. Firstly, an ap-
proach for empirical evaluations of software performance for service-based software

Model-Driven Performance Evaluation 5

systems is still lacking despite its accuracy benefits. Secondly, empirical measure-
ments and evaluations are currently performed only at the code level and mostly
based on code constructs.

In model-driven engineering, observations of behaviour should be in terms
of modelling constructs. Instrumentation for observing software should also be
expressed in terms of these constructs in order to prevent the software architecture
from having to represent transformation details and having to deal with code-level
details. A necessary part of empirical performance evaluation is the execution data
collection through instrumentation.

3.2. Instrumentation

Instruments and instrumentation are commonly used for observing system be-
haviour and evaluating system properties in a range of disciplines. In software
engineering, instrumentation is the process of adding software probes to a pro-
gram [5]. Software probes are pieces of code for collecting data about the software
execution. Two techniques for data collection exist:

e Sampling is a technique where parts of a program are sampled during its
execution in some time interval - an example is sampling the program stack
to follow program execution. It is a statistical technique in which a represen-
tative sample of data about the execution is taken. An advantage is that the
impact on the performance of the program does not depend on the execution
of the program. However, collected samples are different from run to run.
The possibility that infrequent events are missed is another drawback.

e Event tracing is a process of generating traces of events in the software ex-
ecution. A program trace is a dynamic list of events generated as the pro-
gram executes [9]. A trace contains time-ordered events and can be used to
characterize the overall program behaviour. Problems can be caused due to
measurements. Each probe that is added causes execution overhead (perfor-
mance) and event traces require resources (memory).

Due to its greater reliability, event tracing is used here. Event tracing is also more
suitable for service-based software where the focus is on services as black-box
entities that interaction in compositions. Traces are presented in our approach in
relational manner using the concepts of temporal database theory to support the
performance evaluation of traces.

3.3. Temporal Databases

Temporal databases support a notion of time [8]. In contrast to conventional
databases, in which only facts are stored, each fact stored in a temporal data-
base is associated with some time information. These facts can be related to a
valid time dimension and to a transaction time dimension. The valid time dimen-
sion is related to the time when the fact was true in reality. The transaction time
dimension is related to the presence of the fact in the database.

Temporal databases which store only facts about the past are called historical
databases [8]. Historical databases define two kinds of relations, event and interval

6 Pahl, Marko Boskovi¢ and Wilhelm Hasselbring

S y
&
_D

Model with Instrumentation Evaluate

— 3
I:I Event & Interval
Traces

_—
Execution with Probes
FIGURE 2. Overview of the Framework.

relations [14]. Interval relations are used for storing facts which were true for some
time interval. Event relations are used for storing facts which were true at some
particular time point.

We utilise concepts from historical databases, such as both interval and event
relations, to instrument service composition models.

4. Instrumentation

The execution of a program, such as execution and interactions of a composite
service, can be characterized in terms of event and interval relations. For instance,
if an element of a modelling language models a part of the program execution
which lasts for some time interval, it can be instrumented by a specialization of
the interval trace. Our instrumentation technique is developed around an instru-
mentation language, which is integrated with the service modelling language, i.e.
is an extension of the UML activity diagrams that we use to model service or-
chestrations. Both service orchestration language and instrumentation language
are presented at the meta-model layer. We present an overview of the approach in
Fig. 2 that relates modelling and execution.

4.1. Service Process Meta-model

The banking example based on the orchestration of services to a service process
from Fig. 1 is formulated in terms of a UML activity diagram. A (simplified)
definition of UML activity diagrams as a process language is based on activity
nodes and edges to represent services and their connectivity, respectively. We have
given preference to UML activity diagrams over other process notations such as
BPMN, because of UML’s elaborate language extension mechanisms.

4.2. Instrumentation Meta-model

Our instrumentation notation comprises of two parts. Firstly, a basic trace package
(Fig. 3) to capture the notion of traces, i.e. event and interval traces, and operations

Model-Driven Performance Evaluation 7

Field

Trace Operation IdentOp

T "%jl

EventTrace j IntervalTrace IntervalOp ’— EventOp

i |
[[[1

Interval Period StartPeriod || EndPeriod EventTime

FIGURE 3. Basic Trace Package.

to capture these traces. Secondly, the instrumentation of activity diagrams using
the MOF profile extension mechanism (Fig. 4).

The basic trace package reflects the required time dimensions and the record-
ing concepts. The activity diagram instrumentation utilises these. This separation
allows the basic instrumentation principles to be reused in a range of problem-
specific or even model-specific circumstances — which is important as domain-
specific languages are increasingly important. In the given instrumentation, actions
as the central elements of activity diagrams and all control nodes are annotated.
The execution of actions, which represent services at the model level, takes some
time, i.e. an interval trace should be recorded at performance evaluation or exe-
cution time. We assume control flow decisions such as start and end of the overall
process or choices and mergers as instantaneous events, i.e. modelled as event
traces. This is a decision that can be modified at the Instrumentation Diagram
level, without affecting the basic trace package. This provides for easy adaptability
of the instrumentation to different interpretations and modelling languages.

4.3. Instrumentation Application

The application of the instrumented activity diagram is illustrated in Fig. 5. Two
types of model elements - actions such as login or transfer and control nodes such
as the start or the first decision point - are instrumented. An interval consisting
of begin and end time of the service executions that implement the actions are
recorded as a consequence of this instrumentation. Events, i.e. individual time
stamps, are recorded for the control nodes.

For the service architect, it is import to find an adequate instrumentation
that provides answers to the relevant performance questions. For instance, in a
particular situation only the response times (average, maximum) of particular
services, such as the account management services balance and transfer, are of
interest. Then, the instrumentation needs to reflect these requirements.

Pahl, Marko Boskovi¢ and Wilhelm Hasselbring

. target in .
Activity Node Activity Edge
source out

[A [] IJX_\

Object Node Action Control Node| [Control Flow] |Object Flow

1
ActionTrace ColaIN e
Trace

v v

IntervalTrace| | EventTrace

FIGURE 4. Activity Diagram Instrumentation.

<<ActionTrace>> <<ActionTrace>>
BalanceTrace TransferTrace
<<ActionTrace>> ServiceTime: IntervalTime| | ServiceTime: IntervalTime <<ActionTrace>>
LogoutTrace

LoginTrace v T

ServiceTime: IntervalTime Y H ServiceTime: IntervalTime
T

{user,account}

®

/
<<ControlNodeTrace>> ,/ \\ <<C
S ontrolNodeTrace>>
SErTEE ;. destination, N EndTrace
K amount} AN

StartTime: EventTime /! i EndTime: EventTime

<<ControlNodeTrace>> <<ControlNodeTrace>>

DecisionTrace MergeTrace
DecisionTime: EventTime MergeTime: EventTime

F1GURE 5. Application of the Instrumentation to the online bank-
ing service process.

While we consider this instrumentation of actions and control nodes to be
the standard, the approach is flexible enough to accommodate context-specific cus-
tomisations. Some control nodes could be excluded or other modelling elements
could be added. This is only limited by the extent to which transformation and
code generation support the different model element instrumentations. The instru-
mentation of elements could be disabled that are difficult to implement or whose
analysis would not provide useful performance information.

Model-Driven Performance Evaluation 9

5. Performance Monitoring

The implementation of the instrumentation should be, firstly, easy to realise and,
secondly, implemented without significant overhead. Aspects and interception tech-
niques can be utilised to implement the instrumentation and data collection. Al-
though an important aspect of performance evaluation, the focus of this paper is
on the model-related issues of instrumentation specification (such as instrumenta-
tion meta-models) and data query and assessment activities (which are discussed
later on). We only discuss principles of monitoring here.

5.1. Intrumentation and Monitoring

In the services context, often the problem arises that the addition of probes into
the service implementation is not possible due to the nature of services as true
black box software components. We therefore distinguish two scenarios:

e controlled environments that allow access to code. Aspect Oriented Program-
ming (AOP) [15] is a programming approach, suitable for the controlled ap-
proach, which can be used for transparent software instrumentation. AOP
is a technique that enables the separation of instrumentation from the de-
velopment of the core software functionality [16, 17]. Marenholz et al. [17]
use AspectC++ for the instrumentation of operating systems for debugging,
profiling/measurement, and runtime surveillance/monitoring.

e open environments in which services are black-box components. For a trans-
parent instrumentation of component systems, interceptors can be used. In-
terceptors are similar to AOP and can intercept method invocations to trans-
parently instrument a program [18, 19]. Software probes can be predefined
and placed in stubs and skeletons during an interface description compilation
[19]. The probes can be turned on and off at runtime.

The JBoss Application Server, for instance, enables the transparent aspect-oriented
addition of functionality. Its AOP features allow the interception of events and ad-
dition of trigger functionality based on those events.

5.2. Generation of Instrumented Code

Aspect Oriented Programming, interceptors, and bytecode and platform instru-
mentation are approaches that enable the collection of data without affecting the
functionality. We utilize these ideas to collect data about the software execution
at the model level as a separate concern.

The first step, however, is the generation of executable and instrumented
code. Activity diagrams that model service orchestrations can be converted into
executable Web services processes, if invocation information such as the service
location is added to the abstract service process description:

e AOP concepts are used to generate the instrumented executable service code.
e Interception mechanisms add instrumentation and data collection.

10 Pahl, Marko Boskovi¢ and Wilhelm Hasselbring

TransferTrace: DecisionTrace:
ServiceTime: IntervalTime DecisionTime: EventTime
2:22 2:45 2:19
3:03 3:12 2:50
3:15 3:29 3:01
3:10
3:35

Fi1GURE 6. Collected Data for Online Banking Process Instrumentation.

We propose ATL transformations — the ATLAS Transformation Language ATL is
a tool-supported hyrbid model transformation language for the ecplise platform —
to transform activity diagrams into AOP-based code.

5.3. Performance Data Recording

The instrumentation includes monitoring and data collection functionality. Data
is stored in a historical database such as TimeDB or temporal features in Oracle
database servers. Fig. 6 shows a sample recording for the composite process for
online banking based on the instrumentation defined in Fig. 5. Here, only data for
the decision node and the transfer service are provided as samples.

6. Performance Evaluation

6.1. Analysis Language

Temporal and historical databases — which provide the conceptual background for
the analysis part of our evaluation technique — are usually extensions of traditional
relational databases. SQL is therefore available as a query language to retrieve
information in relation to the recorded event and interval times and to use the
language for common statistical operations.

The objective is to extract performance-relevant information from the basic
times stored in a historical database that allows a software architect to assess the
overall performance of individual services and also orchestrated processes. SQL is
sufficient as a query language to formulate the relevant performance assessment
queries. More advanced solutions like data warehouses with their extended evalua-
tion support are not required. We can classify performance assessments as follows:

e Response time assessment: response times of activities are usually recorded
as intervals. The SQL aggregate functions, such as average AVG or maximum
MAX, provide the relevant answers.

e Frequency and distribution of invocations: the distribution of invocations
(workload) between the individual services can be determined based on the
calculation of ratios between total numbers of invocations.

Model-Driven Performance Evaluation 11

The database representation directly reflects the modelling layer, as the rep-
resentation is generated from the model instrumentation. The central goal of fully
model-based performance evaluation is therefore achieved. The queries can conse-
quently be formulated in terms of relevant model elements - which is one of the
central objectives of model-driven quality engineering.

6.2. Performance Analysis

We have already classified the different types of performance assessments in the
previous section. We now illustrate these types.
The average response time for service ’transfer’ can be determined as follows:

SELECT AVG(ServiceTime)
FROM TransferTrace

The determination of the maximum time can be formulated analogously. In
the SOA context, where individual services are often provided by external organi-
sations, this information is usually part of contracts and service-level agreements.

The proportion of transfer’ invocations based in relation to all user selections
(decisions) can also be formulated:

SELECT COUNT(ServiceTime) / COUNT(DecisionTime)
FROM TransferTrace, DecisionTrace

This would allow a software architect to judge the frequency of individual
service activations in typical application scenarios.

7. Related Work

There are several approaches for analytical evaluations of software performance
from annotated models [7, 20] and simulation [21, 26]. A detailed survey related
to performance prediction can be found in [6]. There are also several approaches
for measurement and instrumentation in the context of code-centric development.
Our contribution is an empirical instead of analytic technique for model-level eval-
uation.

e Snodgrass [22] introduces a relational approach for monitoring systems. His
work shows that a relational data structure can be an appropriate formalism
for monitoring dynamic behaviour of a system. The programmer manually
defines the instrumentation according to concepts of an existing system. Our
approach provides a schema for the definition of instrumentation languages
according to the modelling formalism used for the specification of programs.

e Liao et al. [23] introduce a high-level language for program instrumentation
and monitoring. A programmer specifies monitoring and measuring informa-
tion, based on which a static analysis of code is done and instrumentation is
added. However, their language is suited only for procedural languages.

e Another language for program instrumentation is the Metric Description Lan-
guage (MDL) [24]. MDL has the ability to define instrumentation as a sepa-
rate concern, independent of the program functionality, define points at which

12 Pahl, Marko Boskovi¢ and Wilhelm Hasselbring

measurement actions should take place and weave these into a program at
runtime. However, it is limited to functionally decomposed systems.

The idea on integrating software models and instrumentation is introduced in
[25]. The authors develop a set of tools for a model-driven instrumentation. They
define different program models such as a functional program model, a functional
implementation model, a performance model and a monitoring model. Based on
the monitoring model, the source code is instrumented and trace descriptions
are generated. In our approach, the primary artefact of software development is
a model. Therefore, instrumentation is done at the model level. The functional
implementation model is actually a product of software development. Furthermore,
instrumentation defines what to measure and where to measure, and from these
two models, automatically source code is produced.

In the specific context of service-based modelling, a lack of performance anal-
ysis is even more evident, although the need to address performance is recognised
[26] and some solutions exist. The Application Response Measurement (ARM)
standard [1] enables the collection of performance data. It is a conceptual library
suited for usage with programming constructs. We relate our data collection with
modeling constructs on a higher level of instrumentation. The standard only en-
ables the collection of data, but not a systematic way of analyzing. ARM is only
an interface for measurement. We introduce a systematic approach for data anal-
ysis as well as for instrumentation. A different architectural approach is taken in
workflow management contexts [3]. Techniques in available workflow management
languages and systems exist that provide timers, which allow to measure the in-
vocation times out-of-the box by the workflow engine itself. Our solution adds a
summarization component that performs arithmetic functions over a configurable
period of time in a different architectural setting.

8. Conclusions

Empirical performance evaluation enables the validation of timeliness of a software
system. In particular in service-oriented architecture, where software quality is
paramount, the empirical approach that evaluates concrete application platforms is
promising. However, currently an approach for empirical performance evaluation in
the service development process where a model is the primary software artefact, is
lacking. In order to provide software architects with tools for the reliable evaluation
of performance, which goes beyond the predictive approaches of simulation and
abstract analysis, a fully model-based instrumentation and analysis technique is
necessary. The benefit of an empirical technique over predictive approaches is
increased accuracy and therefore reliability of the evaluation results.

We have presented a service-specific approach for the empirical performance
evaluation of model-driven developed services. Instrumentation and empirical per-
formance evaluation is at the moment done based on programming language con-
structs at the source code level. Instrumentation at source code level for data

Model-Driven Performance Evaluation 13

collection about program executions in terms of modelling elements can be error-
prone and can require significant effort. Therefore, the instrumentation needs to
be done at the model level. The models for software functionality definition and
instrumentation definition are separated to reduce the complexity of models.

Our contribution is based on a basic package for the definition of instrumen-
tation languages for UML-based activity diagrams to model service orchestrations,
a methodology for deriving instrumentation languages, and a query language for
performance metrics calculation. The instrumentation languages enable automati-
cally generated data collection in terms of modelling language constructs, and are
stored in the format of relational traces. Temporal database theory provides the
background for the monitoring and analysis elements of the evaluation technique.

The instrumentation language is designed to be generic. The basic instru-
mentation package is application-independent and is, since it is separated from
the application-specific instrumentation of specific model elements, transferable
to other modelling notations and modelling domains. In order to demonstrate the
flexibility of this approach, applications of our framework to class and state models
are being investigated.

Currently, our generation and execution platform is not fully implemented.
We plan to critically evaluate the feasibility of the approach by integrating software
performance evaluation based on relational traces in some commercial tools for
model-driven development. Furthermore, experiments on an extensive case study
will be performed in order to show what the impact of instrumentation code and
execution of the instrumented application is.

Another aspect specific to services shall be investigated in more detail. Our
current work neglects specific issues arising from heterogeneous and fully dis-
tributed systems. The models we have considered here are activity diagrams that
focus on the functional composition of services. The models used do not include
the concept of distribution. Activity diagrams, however, allow modelling of distri-
bution through activity partitions (so-called swimlanes). Since especially perfor-
mance aspects apply to distributed service invocations, corresponding edges that
cross partitions could be instrumented and the system could be monitored with
respect to these inter-location invocations. We expect spatial-temporal databases
to provide the foundations for this aspect.

References

[1] Open Group. Application Response Measurement - ARM. 2002.

[2] M. Penker and H.E. Eriksson. Business Modeling With UML: Business Patterns at
Work. Wiley, 2000.

[3] A. Kumar, W.M.P. Van Der Aalst, and E.M.W. Verbeek. Dynamic Work Distribu-
tion in Workflow Management Systems: How to Balance Quality and Performance,
Journal of Management Information Systems, 18(3):157-193, 2002.

[4] W. Hasselbring and R. Reussner. Toward trustworthy software systems. Computer,
39(4):91-92, 2006.

14 Pahl, Marko Boskovi¢ and Wilhelm Hasselbring

[5] C.U. Smith and L.G. Williams. Performance Solutions: A Practical Guide to Creat-
ing Responsive, Scalable Software. Addison-Wesley, 2001.

[6] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-Based Performance
Prediction in Software Development: A Survey. IEEE Transactions on Software En-
gineering, 30(5):295-310, 2004.

[7] Object Management Group. UML Profile for Schedulability, Performance, and Time
Specification, OMG document formal/05-01-02. web: http://www.omg.org/cgi-
bin/apps/doc?formal/05-01-02.pdf, 2005.

[8] C. Zaniolo, S. Ceri, C. Faloutsos, R. Snodgrass, V. S. Subrahmanian, and R. Zicari.
Advanced Database Systems. Morgan Kaufmann Pubishers, 1997.

[9] D.J. Lilja. Measuring Computer Performance: A Practitioner’s Guide. Cambridge
University Press, 2000.

[10] B. Selic. The Pragmatics of Model-Driven Development. IEEE Software, 20(5):19—
25, 2003.

[11] Object Management Group. MDA Guide. web: http://www.omg.org/cgi-
bin/doc?ormsc/06-06-02.pdf, 2006.

[12] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services — Concepts, Archi-
tectures and Applications. Springer-Verlag, 2004.

[13] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice (2nd Edi-
tion). SEI Series in Software Engineering. Addison-Wesley, 2003.

[14] N.L. Sarda. Extensions to SQL for Historical Databases. IEEE Transactions on
Knowledge and Data Engineering, 02(2):220-230, 1990.

[15] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-Oriented Programming. In Proc. of European Conf. on Object-
Oriented Programming, volume 1241, pages 220-242. Springer-Verlag, 1997.

[16] M. Debusmann and K. Geihs. Efficient and Transparent Instrumentation of Applica-
tion Components using an Aspect-oriented Approach. In 14th IFIP/IEEE Workshop
on Distributed Systems: Operations and Management (DSOM 2003), volume 2867
of LNCS, pages 209—220. Springer, 2003.

[17] D. Mahrenholz, O. Spinczyk, and W. Schroeder-Preikschat. Program Instrumenta-
tion for Debugging and Monitoring with AspectC++. In Proc. 5th Int. Symp. on
Object-Oriented Real-Time Distributed Computing ISORC ’02, pages 249-256. IEEE
Computer Society, 2002.

[18] M. Debusmann, M. Schmid, and R. Kroeger. Measuring End-to-End Performance of
CORBA Applications using a Generic Instrumentation Approach. In ISCC ’02: Proc.
7th Int. Symp. on Computers and Communications, pages 181-186. IEEE Computer
Society, 2002.

[19] J. Li. Monitoring of Component-Based Systems. Technical Report HPL-2002-25,
Imaging Systems Laboratory, HP Laboratories Palo Alto, 2004.

[20] D.B. Petriu and M. Woodside. A metamodel for generating performance models
from UML designs. In Proc. Int. Conf. The Unified Modelling Language: Modelling
Languages and Applications, LCNS 3273, pages 41-53. Springer-Verlag, 2004.

[21] D. Park and S. Kang. Design phase analysis of software performance using aspect-
oriented programming. In O. Aldawud, G. Booch, J. Gray, J. Kienzle, D. Stein,

(22]

23]

24]

(25]

(26]

Model-Driven Performance Evaluation 15

M. Kandé, F. Akkawi, and T. Elrad, editors, The 5th Aspect-Oriented Modeling
Workshop In Conjunction with UML 2004, 2004.

R. Snodgrass. A Relational Approach to Monitoring Complex Systems. ACM Trans-
actions on Computer Systems, 6(2):157-196, 1988.

Y. Liao and D. Cohen. A Specificational Approach to High Level Program Monitor-
ing and Measuring. IEEE Trans. on Software Eng., 18(11):969-978, 1992.

J. K. Hollingsworth, O. Niam, B. P. Miller, Z. Xu, M.J.R. Goncalves, and L. Zheng.
MDL: A Language And a Compiler For Dynamic Program Instrumentation. In PACT
’97: Proc. 1997 Int. Conf. on Parallel Archit. and Compil. Techniq., pages 201-213.
IEEE Comp. Society, 1997.

R. Klar, A. Quick, and F. Soetz. Tools for a Model-driven Instrumentation for
Monitoring. In Proc. 5th Int. Conf. on Modelling Techniques and Tools for Computer
Performance Evaluation, pages 165—180. Elsevier, 1991.

M.B. Blake. A Lightweight Software Design Process for Web Services Workflows.
Proceedings International Conference on Web Services ICWS 2006, pages 411-418,
IEEE Computer Society, 2006.

Claus Pahl

Dublin City University

School of Computing

Dublin 9

Ireland

e-mail: cpahl@computing.dcu.ie

Marko Boskovié

University of Oldenburg

Software Engineering

D-26111 Oldenburg

Germany

e-mail: boskovic@informatik.uni-oldenburg.de

Wilhelm Hasselbring

University of Oldenburg

Software Engineering

D-26111 Oldenburg

Germany

e-mail: hasselbring@informatik.uni-oldenburg.de

