Physico-chemical properties of Ionic-Liquid/Water Mixtures Simon Gallagher # **Contents** - Introduction - Ionic Liquid based Poly(N-Isopropylacrylamide) Gels - Experimental - Raman Spectroscopy of Ionic Liquid/Water Interactions - Conclusions - Acknowledgements Introduction IL Polymer Gels Raman of IL/H₂O Conclusions Acknowledgments #### National Centre for Sensor Research Over 260 f/t researchers and support staff 23 affiliated faculty Investments and income since 1999 now approaching €100 million 1500 m² well-equipped specialist lab space and offices Phase II expansion completed 2008 (1300 m²) The Centre for Sensor Web Technologies **IL Polymer Gels** Raman of IL/H2O **Conclusions** ## CLARITY - SFI CSET - 5-year, €16.4 million research program to develop next generation Sensor Web Technologies with significant environmental focus - Brings together fundamental materials science, functional polymers, device prototyping, energy management, adaptive middleware, wearable sensors, distributed environmental monitoring. #### www.clarity-centre.org Introduction IL Polymer Gels Raman of IL/H₂O **Conclusions** # Thermo-responsive Gels - Poly(N-Isopropylacrylamide) or "PNIPAAM", display inverse solubility upon heating. - Hydrophilic to Hydrophobic transition occurs at lower critical solution temperature (LCST), 30-35°C. - Below LCST, gel swells by intake of water molecules through hydration of aliphatic groups and hydrogen bonding with amide group. - Above LCST, gel collapses along backbone before water molecules are expelled, process is driven by the conversion from polymer-solvent bonds to polymer-polymer and solvent-solvent bonding.¹ Hydrophilic (below LCST) Hydrophobic (above LCST) ΔΤ Time H₃C Raman of IL/H2O **Acknowledgments** Introduction **IL Polymer Gels Conclusions** # **Triphasic PNIPAAM System** - Ionic Liquids incorporated into the polymer forms a modified triphasic system. - With certain Ionic Liquids, rate of contraction can be manipulated. - When placed in water, the IL can tune the LCST temperature, employing plastisizer effect. - Also improve the mechanical stabilty of the gel. Introduction **IL Polymer Gels** Raman of IL/H₂O Conclusions 1-Ethyl-methyl-3-imidazolium-ethyl sulfate; [C₂mim EtSO₄] Introduction **IL Polymer Gels** Raman of IL/H₂O **Conclusions** # Variation of Anion for Comparison 1-Ethyl-methyl-3-imidazolium Bis(trifluoromethylsulfonyl)imide; [C₂mim NTf₂] Introduction **IL Polymer Gels** Raman of IL/H₂O Conclusions # Ionic Liquids crosslinked w/ PNIPAAM Trihexyltetradecylphosphonium Dicyanamide; [P₆₆₆₁₄][DCA] Introduction **IL Polymer Gels** Raman of IL/H₂O **Conclusions** # Manipulation in rate of contraction CLARI | PNIPAAM (g) | Ionic Liquid (g) | % Vol change after ~10secs | Flexibility | | |-------------|------------------|----------------------------|-------------|---------| | | | | (~20°C) | (~40°C) | | 0.5 | 1 | 56 | ***** | **** | [C₂mim][EtSO₄] crosslinked with PNIPAAM monomer submerged in water above LCST Introduction **IL Polymer Gels** Raman of IL/H₂O **Conclusions** #### Improvement in mechanical stability | PNIPAAM (g) | Ionic Liquid (g) | % Vol change after ~10secs | Flexibility | | |-------------|------------------|----------------------------|-------------|---------| | | | | (~20°C) | (~40°C) | | 0.5 | 1 | 17 | ***** | ** | [P₆₆₆₁₄][DCA] crosslinked with PNIPAAM monomer submerged in water above LCST Introduction **IL Polymer Gels** Raman of IL/H₂O **Conclusions** ## Raman Spectroscopy of [P_{6,6,6,14}][DCA] & H₂0 Mixture - Nitrile stretch at 2188cm⁻¹ shifts upfield to 2191cm⁻¹, increasing in energy Introduction IL Polymer Gels Raman of IL/H₂O Conclusions Acknowledgments Raman Spectroscopy of [C₂mim][EtSO₄] & H₂0 Mixture - CH₃(N) and CH₂(N) stretch at 1022cm⁻¹ increases in energy with the addition of bulk water - Also a broadening of the peak indicates more solvation Introduction **IL Polymer Gels** Raman of IL/H₂O **Conclusions** #### Raman Spectroscopy of [C₂mim][NTf₂] & H₂O Mixtures - The anion is changed to the more hydrophobic [NTf₂] - The less significant change shown, displays the effect that bulk water interaction is more apparent in the IL containing the more hydrophillic EtSO₄ anion Introduction IL Polymer Gels Raman of IL/H₂O Conclusions Acknowledgments #### Raman Spectroscopy of [C₂mim][EtSO₄] & H₂O - Ethyl HCH stretch at 2944cm⁻¹ and 2966cm⁻¹ broadens and shifts in energy due to solvation by bulk water. Introduction IL Polymer Gels Raman of IL/H₂O Conclusions Acknowledgments # Raman Spectroscopy of [C₂mim][NTf₂] & H₂O Mixtures - The anion is changed to the more hydrophobic [NTf₂] - Shown that water has interacted more significantly with the IL containing the more hydrophillic [EtSO₄] than the IL containing the hydrophobic [NTf₂] Introduction **IL Polymer Gels** Raman of IL/H₂O Conclusions ### Raman Spectroscopy [C₂mim][EtSO₄] & H₂O Mixtures - CH₃(N)HCH stretch at 3110cm⁻¹ and ring HCCH stretch at 3166cm⁻¹ - After addition of bulk water, ratio between peaks increases substantially Introduction IL Polymer Gels Raman of IL/H₂O Conclusions Acknowledgments #### Raman Spectroscopy of [C₂mim][NTf₂] & H₂O Mixtures - Changing to the hydrophobic [NTf₂] leads to no change in ratio between peaks. - Showing again water interaction favours the hydrophillic [EtSO₄] Introduction IL Polymer Gels Raman of IL/H₂O Conclusions Acknowledgments # **Conclusions** #### [P₆₆₆₁₄][DCA] - Nitrile group of [P₆₆₆₁₄][DCA] was found to be affected by bulk water interaction, showing a shift to increase in energy. #### [C₂mim][EtSO₄] - IL containing hydrophilic [EtSO₄] shows interactions specifically with imidazole ring - Varying of anion to more hydrophobic [NTF₂] shows IL undergoes less change when interacting with water - Result shows that the anions in both ILs play a prominent role in Ionic Liquid crosslinked PNIPAAM gel. Introduction IL Polymer Gels Raman of IL/H₂O Conclusions # Acknowledgments Prof. Dermot Diamond Dr. Kevin Fraser Dr. Robert Byrne Introduction IL Polymer Gels Raman of IL/H₂O **Conclusions** # Thanks for Listening!