
Investigating Software Process in Practice:
A Grounded Theory Perspective

Gerry Coleman a , Rory O’Connor b

a Department of Computing, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland, gerry.coleman@dkit.ie
b School of Computing, Dublin City University, Glasnevin, Dublin 9, Ireland,roconnor@computing.dcu.ie

Abstract. This paper presents the results of a study of how software process and software process improvement
(SPI) is applied in actual practice in the software industry using the indigenous Irish software product industry as
a test-bed. The study used the grounded theory methodology to produce a theory, grounded in the field data, that
explains how software processes are formed and evolve and when and why SPI is undertaken. Our research
found that SPI programmes are implemented reactively and many software managers are reluctant to implement
SPI best practice models because of the associated costs.

Keywords: Software process improvement, grounded theory, CMMI, ISO9000

1. Introduction
Software Process Improvement (SPI) aims to understand the software process as it is used within an
organisation and thus drive the implementation of changes to that process to achieve specific goals
such as achieving higher product quality or reducing costs. SPI models have been developed to assist
companies in this regard and purport to represent beacons of ‘best practice’. Some large software
organisations have used ‘best practice’ process improvement models such as the Capability Maturity
Model/Capability Maturity Model Integrated (CMM/CMMI) (Ahern et al, 2004) and the International
Organisation for Standardisation (ISO) 9000 series (ISO, 1992). More recently, agile methodologies
such as Extreme Programming (XP) (Beck, 2000) have been used in SPI programmes and have been
widely embraced by software organisations. Although commercial SPI models have been highly
publicised and marketed, they are not being widely adopted and their influence in the software
industry therefore remains more at a theoretical than practical level.

In the case of CMMI, evidence for this lack of adoption can be seen by examining the SEI CMMI
appraisal data for the years 2002 to 2006 (SEI, 2006), in which time just 1,581 CMMI appraisals were
reported to the SEI. Whilst we acknowledge the SEI data includes only appraisals that have been both
reported to the SEI and authorized for public release and there are appraisals that are not reported or
authorized for public release, it is clear that the published figures represents a very small proportion of
the world’s software companies and company in-house developers. In the addition, there is evidence
that the majority of small software organisations are not adopting standards such as CMMI. For
example, an Australian study (Staples et al, 2007) found that small organisations considered than
CMMI “would be infeasible”. Further investigation of the SEI CMMI appraisal data reveals that in the
case of Ireland – a country whose indigenous software industry is primarily made of small to medium
sized organisations (SMEs) - fewer than 10 CMMI appraisals were conducted during 2002 to 2006
from a population of more than 900 software companies (Enterprise Ireland, 2005). Therefore it is
also clear that the Irish software industry is largely ignoring the most highly-publicised SPI models. In
the case of CMMI (and its predecessor CMM), Staples and Niazi (2006) discovered, after
systematically reviewing 600 papers, that there has been little published evidence about those
organizations who have decided to not adopt CMM(I).

Accordingly the motivation for our research originates in the premise that in practice software
companies are not following ‘best practice’ process improvement models. On this basis, we set out to
answer two related research questions: Why are software companies not using ‘best practice’ SPI
models? and What software processes are software companies using? – with a view to creating a rich,
explanatory theory of software process in practice. Preliminary investigation of the two research
questions raised the following linked questions:

RQ1 How are software processes initially established in a software company?
RQ2 How do these software processes change?
RQ3 What causes these software processes to change?
RQ4 How do the operational and contextual factors present in organisations influence the content

of and adherence to software processes?

This paper is organized as follows: The remainder of Section 1 describes the context in which this
study was undertaken. Section 2 looks at SPI from an industry perspective. Section 3 examines the
chosen research methodology and Section 4 describes how the methodology was used in the study.
Section 5 looks in detail at the research results and Section 6 contains a discussion on the findings and
looks at the implications the findings have for practitioners and researchers. Finally Section 7 presents
some concluding remarks and presents a future research agenda.

1.1. Study Setting
To ensure the participation of software development professionals who would be familiar with the
considerations involved in using both software process and process improvement models, it was
decided to limit the scope to software product companies whose primary business is software
development. In addition, given the geographical location of the researchers, it was decided to confine
the study to Irish software product companies which has the added advantage of restricting the study
to within the same economic and regulatory regime. Furthermore, restricting the study to indigenous
Irish software product companies significantly increased the prospects of obtaining the historical
information required to understand process foundation and evolution which would not be the case
with non-Irish multinationals operating in the country, as their process would likely have been
initially developed and used within the parent company prior to being devolved to the Irish subsidiary.

Indigenous Irish software companies have played a key role in the Irish software economy. However,
the great majority of indigenous Irish software firms are SMEs. Crone (2002) reports that in 1998
only 1.9% (10 companies), out of a total of 630 indigenous software companies, employed more than
100 people whilst 61% of the total employed 10 or fewer. Of those 630 indigenous software
companies, the venture capital group, HotOrigin (2004) estimate there is a total of 417 are indigenous
software product companies and classify them according to three stages of development: ‘Start-up’ (1-
25 employees), ‘Build’ (26-75 employees), and ‘Expansion’ (75+ employees). The most recent
figures available show that almost three-quarters of indigenous software firms fall into the Start-up
category, with about 9% in the Expansion category and the remainder in the Build category. Thus, the
indigenous software product sector offers a potentially fruitful area for research enquiry.

2. Industry Adoption of Software Process Improvement
In addition to the plan-driven approaches such as CMMI and ISO 9000, agile methodologies have
been used in SPI programmes. Two other ISO standards are directly related to SPI: ISO/IEC 15504
(‘SPICE’) which is a framework for the assessment of software process and ISO 12207 which aims to
be ‘the’ standard that defines all the tasks required for developing and maintaining software.
However, from the commercial SPI perspective, this study was dominated by two particular models
CMM(I) and ISO 9000 and the development methodology XP. Accordingly, the following sub-
sections which provide a brief discussion on industrial perspectives of SPI will be restricted to
CMM(I), ISO 9000 and XP.

2.1. Industry Perspectives on CMM(I)
Numerous studies including (Humphrey et al., 1991; Herbsleb et al., 1997; Pitterman, 2000), report
significant success with using CMM. Because of its relatively recent arrival, fewer organisations have
adopted CMMI and there are correspondingly fewer reports in the literature of its application.
However, Goldenson and Gibson, (2003); Miller et al. (2002); and Heinz (2004) all claim benefit
from its deployment.

The CMMI and the approaches associated with it also has a number of opponents. Bollinger and
McGowan (1991), Baker (1996) and Fayad and Laitinen (1997) express reservations about the
maturity level grading scheme whilst Bach (1994) highlights the number of very successful
companies whose practices, he believes, would be classified at CMM level 1. A frequently expressed
reservation about CMM(I) is its suitability for small organizations (Brodman and Johnson, 1994).
Case studies document the difficulties (Batista and Dias de Figueiredo, 2000) that small organizations
encounter using CMM(I) and the mismatch between the ‘perceived benefit and the actual benefit’ and
as ‘perceived value and actual value’ (Wilki et al, 2005). Staples et al (2007) suggest that ‘small
organizations should not be seen as being at fault for not adopting CMMI, instead the SPI
approaches, sales and marketing should be improved’.

2.2. Industry Perspectives on ISO 9000
ISO 9000 is a series of standards used to certify the quality of systems used by an organisation (ISO,
1992). In seeking ISO 9000 certification companies must “prepare documentation that proves the
[ISO] requirements are being met” and demonstrate that the documentation is “strictly controlled and
that appropriate records of all quality-related activities are kept” (Schuler, 1995). However, unlike
CMM(I), ISO 9000 does not provide a road map for improvement beyond the adherence to quality
management documents. There are few published studies which directly report on ISO 9000’s
application in a software development environment (El Emam and Briand, 1997).

A common criticism of ISO 9000 is the amount of money, time and paperwork required for
registration (Clifford 2005). According to Barnes (2000) “Opponents claim that it is only for
documentation. Proponents believe that if a company has documented its quality systems, then most of
the paperwork has already been completed”. Much of what is written is critical of the fact that ISO
9000 is a general standard and not specifically geared for software production. This is documented by
Fitzgibbon (1996) who believes ISO 9000 is difficult to apply in a software environment and by
Coallier (1994) who feels the standard is insufficient and that a total quality approach, incorporating
continuous improvement, is needed. Further support for this view comes from Oskarsson and Glass,
(1996) who believe that ISO 9000 is primarily applied in the software domain because of its market
credibility and from Demirors et al. (1998) who believe it negates the advantages accruing to small
software firms.

2.3. Industry Perspectives on Agile Methodologies
Though possessing different scope and objectives, agile methodologies are often compared directly
with processes based on process improvement models (Boehm and Turner, 2004) and are frequently
called ‘agile processes’ (Lycett et al., 2003; Cohn and Ford, 2003). To clarify the differences between
CMM(I)-based processes and agile ‘processes’, the label ‘plan-driven’ has been applied to processes
based on the so-called ‘disciplined’ models, such as CMM(I), to clearly distinguish them from the
agile family (Boehm and Turner, 2004). As this study will show, this distinction is more blurred
amongst industry practitioners who regard process models and agile methods as effectively the same
thing.

XP is the most popular and widely recognised methodology (Bowers et al, 2007) in the agile family
and has by far the greatest coverage of any of the agile methodologies in the literature. A number of
authors have reported on using XP in a variety of environments including embedded systems
(Grenning, 2001), web development (Murru et al., 2003), event driven systems (Rasmusson, 2003),
biotech systems and project management (Sliger, 2004) and with legacy applications (Coleman and
McAnallen, 2006). Interestingly, all of these studies have used scaled-down versions of the
methodology in their applications. Aveling’s (2004) research supports this concluding that “partial
adoption of XP is more common than full adoption”. Further support in found in Bowers et al (2007)
who state that “XP adopters would be best served striving to apply the practices in spirit”.

3. Methodology
The methodology chosen for the study was Grounded Theory (Glaser and Strauss, 1967). The
emphasis in grounded theory is on new theory generation. This manifests itself in such a way that,
rather than beginning with a pre-conceived theory in mind, the theory evolves during the research
process itself and is a product of continuous interplay between data collection and analysis of that data
(Goulding, 2002). According to Strauss and Corbin (1998), the theory that is derived from the data is
more likely to resemble what is actually going on than if it were assembled from putting together a
series of concepts based on experience or through speculation. The analytical process involves coding
strategies: the process of breaking down interviews, observations and other forms of appropriate data
into distinct units of meaning which are labelled to generate concepts. These concepts are initially
clustered into descriptive categories. The concepts are then re-evaluated for their interrelationships
and, through a series of analytical steps, are gradually subsumed into higher-order categories, or one
underlying core category, which suggests an emergent theory. Grounded theory was chosen as the
method of enquiry for the following reasons:
• Given the lack of an integrated theory in the literature as to why software companies are avoiding

SPI models, an inductive approach, which allowed theory to emerge based on the experiential
accounts of practitioners, offered the greatest potential.

• It has established guidelines for conducting inductive, theory-generating research.
• It is renowned for its application to human behaviour (Martin and Turner, 1986). Software

development is labour- intensive and software process relies heavily on human compliance.
• It is an established and credible methodology in sociological and health disciplines (Sheldon,

1998), and a burgeoning one in the IT arena.

Furthermore, like others who have applied grounded theory (Baskerville and Pries-Heje, 1999;
Hansen and Kautz, 2005), this study attempts to understand a dimension of software development in
practice. From a software process perspective the role of individual actors and their environmental
surroundings and conditions weighs heavily on how the process is practiced. Facilitating the gathering
and analysis of those human experiences and the associated interrelationships with other human
actors, coupled with situational and contextual factors, are particular strengths of the methodology.
For a fuller discussion on grounded theory, the rationale behind its selection and how it was
implemented in this study please refer to Coleman and O’Connor (2007).

4. Conducting the Grounded Theory Study
The study was divided into 3 phases, a Preliminary phase (P) to help frame the study and test the
interview guide and approach, a more detailed phase (Stage 1) which developed the initial concepts
and categories and enabled evaluation of the theoretical sampling process and the final phase (Stage
2) which further developed the categories and concepts to produce the grounded theory. In total the
study involved 25 interviews across the 21 companies profiled in Table 1. The participants in Stage 1
were chosen from personal contacts of the researchers. For Stage 2, in parallel with making contact
with individuals known second-hand to the researchers, ‘cold’ e-mailing was used to set up the next
series of interviews.

Company

Market
Sector

Category

Total No. of
Employees

No. in Software
Development

Study Stage

1 Telecommunications Start-up 6 3 P
2 Corporate secretarial Build 50 20 P
3 Telecommunications Start-up 10 3 P
4 Telecommunications Build 70 30 1
5 Telecommunications Start-up 12 6 1
6 Compliance Mgt. Expansion 100 40 1
7 Enterprise Expansion 150 100 1 & 2
8 E-learning Expansion 120 70 1
9 Information quality Build 27 9 1
10 Telecommunications Start-up 15 12 1
11 Telecommunications Expansion 160 110 1 & 2

12 Financial services Build 35 23 1
13 Financial services Expansion 130 90 1
14 Interactive TV Build 60 40 1 & 2
15 Public sector Expansion 150 90 2
16 Medical devices Start-up 19 9 2
17 Telecommunications Build 70 35 2
18 Public sector Start-up 3 3 2
19 HR solutions Build 30 15 2
20 Games infrastructure Build 40 20 2
21 Personalisation Build 50 40 2

Table 1. Company Profile by Category

4.1. Preliminary Study Phase
To generate more detailed information on how the sampling process should progress, a preliminary
study phase involving 4 interviews across companies 1-3 was undertaken. To support the semi-
structured interviewing process, an interview guide based on the researchers experience as ‘cultural
insiders’ and their prior familiarity with the literature, was created for use with the first two
interviews. There were 53 questions divided over 4 categories: Company Background, Company
Development, People Issues and Software Development Strategy. The interviews were taped,
transcribed and then coded by hand in accordance with the open coding procedure of grounded
theory. The initial interviews highlighted several drawbacks with the interview guide which drove the
development of a second interview guide containing 34 questions across three categories: Company
Background, People Issues and Software Development Strategy. This interview guide was then used
on interview 3 and in each successive instance. The interviews and the line of questioning
concentrated more on the memos and codes from the prior interview coding and analysis than on the
formalised question set. In addition, Stage 2 analysis of the software companies’ target market
indicated that the intended list of companies, in the full study, should incorporate as many sectors as
possible.

4.2. Study Stage 1
The next phase of the study (Stage 1) involved interviews with an additional 11 companies. Each
interview lasted between one and one-and-a-half hours and the initial propositions emanating from the
data analysis were used as general topics for investigation. Closely following the tenets of grounded
theory meant that, following the initial open coding, the interviews were then re-analysed and coded
axially across the higher-level categories that had emerged from earlier interviews. Any memos or
propositions that emerged through the coding process were recorded for further analysis and inclusion
as questions in subsequent interviews. A consequence of this was that the interview guide was
constantly updated.

Because of the clear repetitions within the data, the memos and propositions created during the
constant comparative process were further analysed and a number of provisional hypotheses
formulated (Table 2), which had the potential to explain how the concepts and categories emerging
from the study were linked. Occasionally, using grounded theory approaches, a set of hypotheses is
often the main output of the study (Seaman and Basili, 1997). However, hypothesis testing can also be
used within grounded theory to validate the theory that is emerging. The analysis of the results from
14 companies and the subsequent hypothesis creation constituted the end of Stage 1. Study Stage 2
would be used to test these hypotheses and ensure the emergent theory was properly grounded.

No. Hypotheses
H1 The initial software development process used by Irish software product companies is based on the

prior experience of the software development manager
H2 The initial software development process used by Irish software product companies is tailored to suit

the requirements of the target product market
H3 In Irish software product companies SPI occurs as a result of positive and negative ‘trigger’ events
H4 The recruitment of external management expertise is used by Irish software product companies to

solve positive and negative ‘trigger’ events

H5 The use of minimum process in Irish software product companies does not diminish the company’s
ability to satisfy its business objectives

H6 Within Irish software product companies restrictions are imposed on team sizes to achieve minimum
process requirements

H7 The use of XP practices satisfy an Irish software product company’s minimum process requirement
better than ISO 9000 or CMM(I)

H8 Development managers in Irish software product companies believe that by using XP practices they
get more developer buy-in to process than if using ISO 9000 or CMM(I)

H9 Non-ISO 9000/CMM(I)-certified Irish software product companies generate only minimum
documentation

H10 Within Irish software product companies, adoption of ISO 9000 and CMM(I) is limited because of
their emphasis on what development managers perceive as non-essential process elements

H11 XP is perceived by development managers in Irish software product companies to be more cost
effective than ISO 9000 and CMM(I)

H12 The costs associated with achieving and adhering to ISO 9000 and CMM(I) prevent their adoption in
Irish software product companies

Table 2. Study Stage 1 Provisional Hypotheses

4.3. Study Phase 2
The requirement to test these provisional hypotheses drove the development of Stage 2 which
involved the participation of 7 new companies and comprised 10 further interviews. Three of these
interviews involved re-interviewing earlier participants, a technique available to grounded theory
studies and supported by (Goulding, 2002) as it allows for a comprehensive checking and verification
process of the data already analysed. The 7 new companies (Companies 15-21) were specifically
selected as their business sectors helped extend the scope of the study and ensured that theoretical
categories were not being established on an excessively narrow basis. During the Stage 2 fieldwork
the semi-structured interview questions were primarily derived from the Stage 1 hypotheses. Because
of this the interviews had greater focus. Less time was spent exploring issues which did not directly
relate to the hypotheses and greater effort was made to ensure the categories and subcategories were
fully ‘saturated’. Theoretical saturation occurs when no new information about that category is
revealed through further coding from additional interviews (Strauss and Corbin, 1998). Full category
‘saturation’ was reached on the conclusion of interview 25 as, in line with Goulding’s (2002)
assertion, similar incidences within the data were now occurring repeatedly and proceeding would be
unlikely to generate any further contrary data.

Taking the Strauss and Corbin (1998) approach, the constant comparative method was used to
validate the hypotheses against the newly collected data. It is important to note that the objective
within this study was not to prove or disprove the provisional hypotheses but, in common with other
grounded theory studies (Orlikowski, 1993; Hansen and Kautz, 2005), to use them to develop and
saturate the core categories. Whilst all of the hypotheses were ‘tested’ and verified in Stage 2 of the
study, one hypothesis (H6) failed to develop further during that Stage 2. Though not fully supporting
hypothesis H6, the findings in Stage 2 did support the remaining hypotheses and these in turn were
incorporated into the theoretical categories and attributes, which are presented in section 5.

5. Research Results
The emphasis in grounded theory is on theory generation, where a theory is ‘a set of well-developed
categories (e.g. themes, concepts) that are systematically interrelated through statements of
relationship to form a theoretical framework’ (Strauss and Corbin, 1998). The analysis in this study
showed that there was one central category to support and link two theoretical themes. The final list of
themes, the core category and the main categories identified by the study are shown in Table 3. The
categories and the various relationships were then combined to form the theoretical framework as
shown in Figure 1. Within the theoretical framework each node is linked by a precedence operator
with the node attached to the arrowhead denoting the successor. No relationship types other than
precedence are contained within the framework and the network is read from left to right. The tildes
(‘~’) represent codes that were renamed or merged with other codes during the analysis process.

The reasoning behind the processes companies are using is contained within the explanations of the
study’s two key theoretical themes, Process Formation and Process Evolution and its core theoretical
category, Cost of Process. The following subsections will present these findings in more detail. In
keeping with the fundamental tenets of Grounded Theory, extracts of the interview transcripts will
also be presented in support of the findings.

Theme Category
Process Formation1 Background of Software Development Manager

Background of Founder
Management Style
Process Tailoring
Market Requirements

Theme Category
Process Evolution Process Erosion

Minimum Process
Business Event
SPI Trigger
Employee Buy-in to Process
Hiring Expertise
Process Inertia

Core Category Category
Cost of Process Bureaucracy

Documentation
Communication
Tacit Knowledge
Creativity Flexibility

Table 3. Themes, Core Categories and Categories

Background of founder

Management styleBackground of software development
manager

Pro cess formation

Pro cess models

Pro cess tailor ing

SPI focus

Minimum process

~Cost of process

Hir ing Exper tise

Pro cess erosion

Employee buy-in to process

Software development process

~Market requirements

SPI trigger

Business event

Do cum entation

Co mmunication

Creativity

Flexibility

~Bureaucra cy

Pro cess Inertia

Figure 1. The Theoretical Framework

5.1. Process Formation
One of the key theoretical themes is Process Formation. In the study companies the title of the person
with overall responsibility for software process differed. For clarity the generic title ‘Software
Development Manager’ has been used in this study. The findings show that how process is formed
depends on several factors: Background of the Software Development Manager, essentially the

1 From hereon, the themes, categories and core category are denoted in italics

expertise that manager has accumulated over their working and educational lives; the founder’s, and
the Software Development Manager’s Management Style; the Market Requirements or demands of
the market in which the company operates.

Where the software development manager had worked before and what process / process
improvement model they used shaped the process that the software development manager used in
their current company. The following extract from Company 8 is typical of the company responses as
to why a particular process model was used: “For software development we have used the RUP. The
reason is that the guy we took in to head up our technology area brought that with him”. The CTO of
company 9 also provides a representative comment on the influence of the Background of the
Software Development Manager: “In terms of technology, I'm the CTO, I was hired [in week 2 of
company's existence] to build the team, build the vision and build the products... I've been involved in
SPI wherever I have gone and here I make sure that the processes from day 1 are reasonable if not
great”.

The category Management Style describes the way a leader discharges their administrative functions
and motivates and communicates with their staff (Buchanan and Huczynski, 1985). There was a sharp
diversity between the Management Styles adopted within the different study companies. Some
companies tend to be more enforcing of process allowing little deviation which we categorised as
‘Command and Control’ with strong similarities to McGregor’s (1985) ‘Theory X’ style. Examples of
this Management Style can be seen in company 1 who directed their staff on why they needed to
follow SPI: “So we were telling people this [SPI] is for the growth of the company so it's for
everybody's good to go along with it and embrace it”. In opposition to ‘command and control’
structures, many company managers operate what can be characterised for this study as an ‘Embrace
and Empower’ regime, similar to McGregor’s (1985) ‘Theory Y’ style. In this context, the opinions of
subordinates are valued and included as part of software development policy and there is greater
evidence of trust in development staff and their ability to carry out tasks with less direct supervision.
Agile methods such as XP, with its advocacy of self-empowered teams and shared ownership, is more
associated with this style of management and was more widely deployed in companies exhibiting this
style of management, as exemplified by company 12: “If you have 1 guy working on a piece of
consultancy with 15 years experience he understands the principles of how we work. He knows what
he’s doing and doesn’t need me interfering”.

The Market Requirements of the target market are fundamental influencers of the process adopted by
a software organisation. A good example of this is a company who propose to target the medical
sector but who initially had a short timeline to develop prototype training products for demonstration
at a medical trade show: “We developed the training product using XP and this allowed us to get the
core software technology built and develop an early revenue stream. When we move up the value
chain into surgery where it will need FDA approval we will have to change the process”.

Though, in process terms, the software development manager brings with them a wealth of experience
to their new organisation, some of that may have been gathered in organisations which were much
different in nature, which means that some Process Tailoring to reflect their new environment was
necessary. In every case however, contextual issues, in addition to the Background of Software
Development Manager and the Market Requirements, were the main inputs to the tailoring process.
Company 12 put it most succinctly: “With most methodologies and approaches very few stick to the
letter of them and they are always adapted, so we adapted ours to the way we wanted for our own size
and scale”.

5.2. Process Evolution
The theoretical network describing Process Evolution is contained in Figure 2. The study shows that
that Process Evolution does not occur in a linear fashion and is directly related to the events that the
business experiences. Software Process Evolution occurs as follows. Over time, the company’s
existing Software Development Process experiences Process Erosion. The key causes of Process

Erosion are the Cost of Process and Employee Buy-in to Process. Process Erosion eventually leads to
a Minimum Process, which is the de facto operational Software Development Process until a Business
Event renders it no longer sufficient. The Business Event causes an SPI Trigger and where the SPI
activity is needed is the subject of SPI Focus. Some companies seek experienced staff (Hiring
Expertise) to solve SPI Trigger problems. Following the SPI initiative a new Software Development
Process emerges. Soon after Process Erosion begins to recur and as development activities begin to
drift back to a Minimum Process. Some of the gains made during the SPI initiative are lost. The
organisation then moves into a state of Process Inertia whereby it is apathetic towards any further
process change. This continues until another Business Event causes the SPI cycle to repeat.

Process models Process tailoring

SPI focus

"Official" process Vs actual process

Minimum process

~Cost of process

Hiring Expertise

Process erosion

Software development process

Commercial development models

Commercial SPI models

Business event

Process evolution

Posit ive SPI trigger Negative SPI trigger

Certification

Employee buy-in to processProcess Inertia

Figure 2. Process Evolution Network

Process Erosion takes place for a number of reasons. Process is initially established and tailored
according to local requirements. When this process is improved, perhaps to cater for larger projects, a
return to smaller projects often sees some process steps being omitted or set aside. Company 1
introduced ISO 9000 into its software development but had this experience after using it for a period
of time: “Lately we haven't followed it [ISO9000] as closely as we should because the projects we've
had are small-scale”. In many cases within the companies, size of project is the determining factor in
relation to what process, or how much process, is used. However, when practices get dropped they are
often not reintroduced back into the process for subsequent projects. As Company 2 explains: “The
test team don't write the test specification to the same degree that they would in the mid-'90s as we
just don't have the time. There are so many different sub projects going on simultaneously that in
order to get system testing done we have to cut some corners”. What is significant about this extract is
that not only is Process Erosion occurring, but it is also being done with management compliance.

The outcome of Process Erosion is an operational Minimum Process, which we define as “the least
amount of activities, methods, practices and documentation required to develop and maintain
software and its associated products that satisfies business objectives”. It is important to note the
difference between Process Tailoring and Minimum Process. Process Tailoring is a conscious and
deliberate effort to fashion a process from a generic model which takes account of local contextual
issues. Minimum Process results from Process Erosion and represents a further reduction of the
already tailored process. The experience of one company illustrates this in relation to configuration

management: “The configuration manager would be responsible for spot-checking the code to ensure
that the variables conform to the naming convention. That's in place, though in recent days we have
got a bit slack on that as well”.

A linked issue which affects how ‘minimum’ the process is in practice is the level of Employee Buy-in
to Process. In a number of cases the biggest issue rested with the senior staff as exemplified by this
interview extract: “I have difficulty getting developers to write their weekly status reports. The better
the developer, the less likely they are to send them. The best developers are literally in mutiny”.
Companies also experience a situation whereby engineers, if they do not agree, or wish to conform to
a process requirement, will engage in ‘workarounds’.

On an ongoing basis the Minimum Process will suffice as long as the operational conditions in which
it is being used remain the same. However changing business conditions generate an SPI Trigger,
which can be ‘positive’ or ‘negative’, and necessitates process change. For example, as marketing
efforts generate new, larger customers, process changes are often essential, thus creating a Positive
SPI Trigger, as explained here: “So, as you get progressively bigger deals you also have to scale your
development resources and group to be able to handle that. A bigger team needs more process”.
Nonetheless, the vast majority of process improvements reported by the study participants took place
because of Negative SPI Triggers. These took a number of different forms, including inadequate
Quality and poor project management and is best captured by this interview extract: “Up to then we
were selling to the Irish market and we realised people were coming back and they weren't even
happy with the quality of the forms we generated from our software. There were numerous typing
mistakes and nothing was really tested as it should have been”.

In all cases Hiring Expertise was used to deal with a Trigger, as companies took the view that the
business event was either caused by a collective failure on behalf of all the current employees or could
not be solved from within. Company 8, whose powerlessness in meeting budgets and schedules was
previously highlighted, also hired the practitioner interviewed for this study as part of the resolution:
“They knew they had to take decisive action to the way they were doing development. They hired me
deliberately. It was strategic. I had already done a start-up so I had gone through the evolution of
that chaotic first phase”.

Process Inertia is an apathy towards the software process as it is used in the organisation. It represents
a situation where, even though a company might recognise that there are inherent weaknesses in the
process as it is used, these weaknesses are not sufficient to necessitate change or generate interest in
SPI. The following interview extract best describes managerial indifference: “There is little or no
interest in other processes at a low level and the managers including myself have little or no interest
in even learning about other processes at this time. Everyone is pretty happy with the way things work
and why change it?”.

5.3. Cost of Process
In the course of the study interviews, managers expressed the belief that process has a significant cost
which they attempted to keep to a minimum. What the managers perceived as the Cost of Process
centred on a number of factors, illustrated in the network diagram Figure 3.

~Cost of process Documentation

End-user documentationPhase documentation

Process-related documentationCommunicationTacit knowledge

Creativity

Flexibility

~Bureaucracy

Process erosionSoftware development process

Application type

~Market requirements

Figure 3. Cost of Process Network
The category Bureaucracy covers items including the time and resources which the managers in the
study believe are required to administer and apply the software process. Managers divided process
into two separate categories, ‘essential’ and ‘non-essential’. Essential process was that which was
most closely linked to the product such as requirements gathering, testing and design. Non-essential
process, which in the view of managers could often be omitted included process/quality-related
documents, software measurement and many management activities such as planning, estimating and
staging meetings. Several managers described some process activities as a ‘luxury’ and not something
essential to creating software products. The use of the word luxury is quite significant, as it is a
synonym for ‘extravagance’, ‘indulgence’, or ‘something inessential’ (New Oxford Thesaurus of
English, 2001). The following comment from a company 2 illustrates this point: “In the earlier stages
when we would do a design document we would have all the team members giving their feedback on
how that would impact on the system. Now we have to bypass that because of time constraints. We
just don't have the luxury of having everybody around a table”.

The managers interviewed for this study believe Documentation is one of the single biggest
contributors to the Cost of Process. This was a matter of real concern as one manager explained:
“With more people we would have to get involved in more administration, more recording and more
documentation. And you could end up hiring administrators purely to document your processes and to
ensure they are being followed”. In accordance with the reticence to document, many managers linked
improving the software process with the creation of additional Documentation. Reduced
Documentation was associated with situations where managers had high levels of trust in their
developers and their experience as explained in this interviewee comment: “It comes down to
experience, what are the key things to do. It's not about writing reams of documentation nor having
huge heavyweight process”.

Because Documentation was seen by the managers as such a significant process cost they encouraged
verbal Communication as a way of sharing information and reducing the Documentation load. Within
the study organisations there is often conflict between explicit knowledge, represented by
Documentation, and Tacit Knowledge, which is the undocumented, intuitive know-how of the
individual or team. One company explained how they use simple Documentation and developer co-
location to achieve knowledge sharing: “At that stage the product and project design was done on an
A4 piece of paper and when something needed changing you could talk to the guy next to you because
he knew what you were doing and you knew what he was doing”. There is a conviction, firmly-held in
the larger companies, that Documentation alone will not ensure that all team members have a shared
understanding of a project’s requirements and that deficiencies here can be overcome through
informal Communication. By contrast, there is an acceptance in many of the smaller companies that
though Tacit Knowledge and informal Communication is the norm, Documentation is necessary on
occasion. Despite this, even the companies who use Tacit Knowledge extensively recognise that it has
its limitations and may ultimately carry its own cost. This is especially true of those companies who

are using XP and who worry about the emphasis on informal Communication at the expense of
Documentation.

Process was also perceived by managers as having a negative impact on a development team’s
Creativity and Flexibility. Software companies, especially start-ups, need to be flexible, creative,
dynamic and capable of delivering products quickly in order to survive. Several of the start-up
companies in this study saw processes as primarily of benefit to established companies, as described
here: “If you want to be more sure of the results, the processes will give you more likelihood of being
sure, but it's probably a bit like playing it safe. I think you won't get the same level of innovation or
creativity”. Product companies focus on product development and fear that increased process will
detract from that focus and that the price of additional process is a decrease in Flexibility, as
illustrated by this interviewee comment: “When we set up we had more supervisory and managerial
roles in that group than we have now and we had to scale that back which has made things a lot more
flexible. I do think you have to be nimble, quick and capable of being responsive in our position. That
works well and I don't want to lose it”.

5.4. Process Improvement Models
Of the 21 study companies, 3 are currently ISO 9000 certified and one is embarking on the ISO 9000
certification process. None of the companies are using CMMI. Significantly, though many of the
companies classified their usage of XP as a process improvement initiative and an example of best
practice. Resistance to all of these models stemmed from their perceived cost of adoption.

Used by companies at all size levels, the tailored versions of XP which the companies deployed were
seen to be very cost effective. One manager argues that XP provides the fastest time to market
capability of all the models available: “There's now no way we could deliver faster with a different
process than with this. XP gives you a lot of advantages in delivering quickly even on small projects”.
The ability to reduce the ‘process’ elements in development was a key factor in the success of XP.
Companies reported developer benefits and how easily they embraced the methodology such as with
this company: “It's attractive to the coders because in theory it shortens their development cycle and
has them doing less stuff that they dislike like documentation, test specs etc.”.

There was strong opposition to the use of ISO 9000 by a number of software managers in the study.
Some of this centred on its perceived emphasis on procedure and Documentation rather than product
Quality. This was best summarised by Company 5: “But in one way ISO doesn't focus on the
important bits at all, it's still a very paper driven thing. You can get away with having an ISO system
that doesn't actually do any source code control at all and still get your 9001 certification”. Small
software companies and start-ups are especially wary of ISO and the amount of Documentation
required by the standard. Company 16, who are preparing to enter a regulated market, attempted,
unsuccessfully, to introduce ISO on start-up: “Initially we tried to follow an ISO mode. But that just
crushed us in paperwork. So we abandoned it as we have a small number of engineers and we needed
to be producing output”.

Awareness of CMMI among the managers was far lower than was the case with ISO 9000. Though a
number of the managers interviewed had experience of CMM(I) from previous employment, none had
incorporated it into their present positions, deeming it unsuitable for a small software product
company: “If you look at CMMI it was delivered for the likes of NASA. We might sell a piece of
software that needs to be delivered in 3 months. So, the overhead of instigating a very rigorous
CMMI-style process is outweighed by the time it takes to deliver it”. The opinions of one manager,
having investigated it and chosen not to introduce it, represents all companies who reached the same
conclusion: “We felt CMM was overkill for the level of development we were doing, so it wasn’t
pursued”.

6. Discussion
6.1. Research Contribution
This research provides a grounded understanding of the practice of software process and software
process improvement, explains the factors that influence the way process is established and evolves in
software companies and describes the reasoning behind why software companies largely ignore
commercial best practice software process and process improvement models. This study moves
beyond much of the mainstream literature in two ways. Firstly, by employing an inductive approach it
challenges the current mores and truisms in software development theory which have typically been
derived using deductive methods to prove ‘accepted wisdom’. By contrast this research has given
voice to practitioners thereby enabling ‘practice to inform theory’ and importantly provide a challenge
to ‘accepted wisdom’. Secondly, it has deployed a qualitative methodology more associated with the
social sciences in a primarily scientific field. The use of grounded theory in this way has culminated
in empirically-valid theory and has the capacity to provide encouragement to other researchers to
bring alternative methodologies to bear on aspects of software development.

In a challenge to the mainstream SPI literature, this work moves beyond the ‘single case study’
success story which is the dominant model in software process publications. The majority of these
studies concern large multi-national corporations and their lessons have extremely limited resonance
in a small software product company. Software SMEs can identify with what is being stated in this
study and with the described prevailing conditions of limited resources, personnel and time. There is
now additional clarity and understanding of the issues facing software process and process
improvement in small software product companies and in particular the indigenous Irish software
sector.

6.2. Implications for Practitioners
The findings of this research contain useful lessons for software entrepreneurs who need to make
decisions about process and process change as their organisations grow. The theory presented here
represents a form of ‘experience map’ illustrating some of the pitfalls a software product company
could face and how others have avoided or resolved them. One of the lessons from practice indicate
that the first process used by a software company is based, in the main, on the prior experience of the
person appointed as Software Development Manager. This has clear implications for the hiring policy
of the software start-up, as this role is pivotal to future success. Similarly, that SPI, in small
companies, results from trigger events also carries implications for professional software developers.
The option here is for companies to attempt to foresee some of these triggers and then make
appropriate provision to deal with them as they arise.

The study has uncovered evidence that many companies are benefiting from informal
Communication, particularly verbal Communication, and Tacit Knowledge at the expense of detailed
Documentation. Companies who have gained from sharing Tacit Knowledge have generally had a
workspace and supporting environment conducive to informal information exchange between
employees. Organisations who have a more closed and rigid workspace will have to consider
measures to overcome this if they are to implement a policy supporting informal Communication.

6.3. Implications for Researchers
This research indicates that SPI adoption and success is not merely a matter of knowledge and
training. The reasons that companies avoid SPI is not because they don’t know what to do or how to
do it but that they don’t feel any necessity to do it until events dictate otherwise and even then will do
the minimum required. This poses questions for many SPI researchers whose approach is to prove the
benefits of SPI through case studies and reports of the benefits accruing to companies who implement
SPI. If the companies in this study are broadly representative of the small software product
community then clearly that message is either not getting through, or being ignored.

The question of how CMMI can produce positive results in small settings has been explored by a
number of researchers including (Coleman Dangle et al., 2005; Horvat et al., 2000; Heinz, 2004).
However, the argument put forward within our study research is that small software companies
grudgingly commit resources to SPI only when absolutely necessary and even then operate off a
Minimum Process. As a result, ‘one-size fits all’ models such as CMMI are always going to find it
difficult to penetrate small software organisations. Such contextual realities must be considered by
SPI researchers. The implication being that perhaps too little time has been spent investigating why
software SMEs are not prepared to adopt or even experiment with these models.

Given the volume of material in the literature, it is perhaps surprising that there was no reference
whatsoever, by any of the study respondents, to the ISO/IEC 15504 (‘SPICE’) software process
assessment standard (Dorling, 1993). The literature available on ISO/IEC 15504 suggests that it can
be scaled for use by small and very small companies much more easily than CMMI. However, the
absence of knowledge about the standard amongst practitioners should give cause for concern
amongst its founders and advocates.

Though it is not new to claim that SPI has an associated cost, many companies are deterred from
investigating SPI models because of a ‘perceived cost’. Managers’ perception is that SPI means
increased Documentation and Bureaucracy. Such a perception is widespread and is seen as a ‘feature’
of plan-driven approachs such as CMMI. Whether or not this is true is a moot point. The fact that
managers associate CMMI with increased overheads results, in most small company instances, in the
model not being considered as a solution or worthy of investigation. Supporters of CMMI claim that
use of the models can lead to greater predictability and repeatability (Boehm and Turner, 2004).
Paradoxically this works against CMMI from the perception of software start-ups. Many small
software companies would argue that each project and situation is new to them and that Creativity and
Flexibility are higher on their list of desired capabilities than predictability and repeatability. The
companies in this study believe agile methodologies support Creativity and Flexibility. Accordingly it
is easy to see how XP has achieved much higher usage in indigenous Irish software companies than
plan-driven approaches such as CMMI.

6.4. Limitation of the study
Grounded theory as a qualitative research method, using semi-structured interviews, centre on
respondents’ opinions. This opinion is the respondent’s view or perception of what is taking place,
which of course may be at odds with reality. In many instances there may be no supporting evidence
to verify the opinion expressed. However, researchers must accept the veracity of what respondents
say during the study interviews (Hansen, and Kautz, 2005). Notwithstanding the issues surrounding
semi-structured interviews, the opinions of the participants are vital. In this study, even though the
reality of the situation could be potentially different to that described, it is the managers’ perception of
what is happening and it is on this perception that they base their decisions. It is these actions and
interactions, arising from the participants opinions, beliefs and perceptions, which are essential to a
grounded theory study.

7. Conclusion
7.1. Summary and Conclusions
This research set out to explore two specific research questions and a number of related questions:
Why are software companies not using ‘best practice’ SPI models? and What software processes are
software companies using? Firstly, on the issue of what software processes are software companies
using, the study has found that no company is using an ‘out of the box’ process model but rather all
are using some kind of proprietary software process. All of the companies concerned engage in
Process Tailoring and have adapted the software process to their own particular operating context.
This operating context reflects the size of the company, the market in which they are operating and
the types of projects in which they are engaged.

The research question why are software companies not using ‘best practice’ SPI models produced the
study’s core category Cost of Process. Implementing and maintaining any SPI initiative incurs
significant cost and the financial and time implications of introducing some of the commercial SPI
and quality models have been presented in this paper. For many of the interviewees SPI creates an
additional burden to their development efforts resulting in increased Documentation and Bureaucracy.
In the case of the smaller companies SPI was resisted as they believed it would negatively impact
their Creativity and Flexibility.

7.2. Future Research
One of the contributions of this work is a grounded theory explaining how software process is initially
established in a software start-up. As the literature lacks a comprehensive investigation of software
process initiation and usage in beginning software product companies, the opportunity arises therefore
for other researchers to explore this area to determine support for, or a challenge to, the generated
theory.

This study concentrated in one geographical location. A study which examines practices in other
countries would provide further validity for this research and indicate if the findings can be replicated
elsewhere or if they are peculiar to the Irish context. As much software is developed outside the
software product company domain, a study including a wider range of software development from
bespoke software solutions to the in-house software departments of non-software companies could be
counter-balanced against this work. Another research focus could involve capturing the opinions and
experiences of the engineers themselves. This would add to the data and analysis on Management
Style and cultural issues as they exist in organisations and would also develop the category of
Employee Buy-in to Process which emerged in this study. Further development in such a work would
include the Minimum Process, Process Erosion and Process Inertia categories as they are
significantly affected by engineer attitudes.

References

Ahern, D.M., Clouse, A., Turner, R., 2004. CMMI Distilled: A Practical Introduction to Integrated Process
Improvement, 2nd Ed, Addison Wesley, Boston.

Aveling, B., 2004. XP Lite Considered Harmful?, In: Proceedings of the 5th International Conference of
Extreme Programming and Agile Processes in Software Engineering, Springer, LNCS 3092, 94-103.

Baskerville, R. and Pries-Heje, J., 1999, ‘Grounded Action Research: A Method for Understanding IT in
Practice’, in Accounting, Management and Information Technologies, No. 9, 1-23.

Barnes. F., 2000, Good Business Sense Is the Key to Confronting ISO 9000, Review of Business, March
Batista, J., Dias de Figueiredo, A., 2000. SPI in a very small team: a case with CMM. Software Process

Improvement and Practice 5, 243–250.
Bach, J., 1994. The Immaturity of CMM, In: American Programmer, September, Vol. 7, No. 9, pp. 13-18.
Baker, R., 1996. The Corporate Politics of CMM Ratings, In: Communications of the ACM, Vol. 39, No. 9,

105-106.
Beck, K, 2000, Extreme Programming Explained: Embrace Change, Addison Wesley.
Boehm, B., Turner, R., 2004. Balancing Agility and Discipline, Addison Wesley.
Bollinger, T.B., McGowan, C., 1991. A Critical Look at Software Capability Evaluations, In: IEEE Software,

July, 25-41.
Bowers. A., Sangwan. R., Neill., C., 2007, Adoption of XP practices in the industry - A survey, Software

Process: Improvement and Practice, Vol. 12, No. 3., 283 - 294
Brodman, J.G., Johnson D.L., 1994. What Small Businesses and Small Organisations say about the CMM, In:

Proceedings of the 16th International Conference on Software Engineering, 331-340.
Buchanan, D.A., Huczynski, A.A., 1985. Organisational Behaviour: An Introductory Text, Prentice-Hall

International (UK) Ltd., London.
Coallier, F., 1994, How ISO 9001 Fits into the Software World, In: IEEE Software, January, 98-100.
Cohn, M., Ford D., 2003. Introducing an Agile Process to an Organisation, In: IEEE Computer, June, 74-78.
Coleman, G., McAnallen, M., 2006. Managing the Challenges of Legacy Systems Using Extreme Programming,

In: Software Process Improvement and Practice, No. 11, 269-275.
Coleman G., O’Connor R., Using grounded theory to understand software process improvement: A case study

of Irish software product companies, Information and Software Technology, Vol. 49, No. 6, 531-694.

Coleman Dangle, K, Larsen, P, Shaw, M., Zelkowitz, M.V., 2005. Software Process Improvement in Small
Organisations: A Case Study, In: IEEE Software, November/December, 68-75.

Crone, M., 2002, A Profile of the Irish Software Industry, Northern Ireland Economic Research Centre.
Clifford. S., 2005, So many standards to follow, so little payoff, Inc Magazine, May
Demirors, E., Demirors, O., Dikenelli, O., Keskin, B., 1998. Process Improvement Towards ISO 9001

Certification in a Small Software Organisation, In: Proceedings of the 20th International Conference on
Software Engineering, 435-438.

Dorling, A., 1993. SPICE: Software Process Improvement and Capability dEtermination, In: Information and
Software Technology, Vol. 36, No. 6/7, 404-406.

El Emam, K., Briand, L., 1997. Costs and Benefits of Software Process Improvement, Technical Report ISERN
97-12, Fraunhofer Institute for Experimental Software Engineering, Germany.

Enterprise Ireland, 2005. Software Industry Statistics 1991-2004, available at
http://www.nsd.ie/htm/ssii/stat.htm.

Fayad, M., Laitinen, M., 1997. Process Assessment Considered Wasteful, In: Communications of the ACM,
Vol. 40, No. 11, 125-128.

Fitzgibbon, C., 1996. ISO 9001 Registration: Lessons Learned by Canadian Software Companies, In:
Proceedings of the Fifth International Conference on Management of Technology, Florida, 193-201.

Glaser, B., Strauss, A., 1967. The Discovery of Grounded Theory: Strategies for Qualitative Research, Aldine.
Goldenson, D., Gibson, D., 2003. Demonstrating the Impact and Benefits of CMMI: An Update and Preliminary

Results, Technical Report CMU/SEI-2003-SR-009, Software Engineering Institute, Pittsburgh, PA.
Goulding, C., 2002. Grounded Theory: A Practical Guide for Management, Business and Market Researchers,

Sage Publications.
Grenning, J., 2001. Launching Extreme Programming at a Process-Intensive Company, In: IEEE Software,

November/December, 27-33.
Hansen, B. and Kautz, K, 2005, ‘Grounded Theory Applied – Studying Information Systems Development

Methodologies in Practice’, in Proceedings of 38th Annual Hawaiian International Conference on Systems
Sciences, Big Island, HI.

Heinz, L., 2004. CMMI for Small Businesses: Initial Results of the Pilot Study, http://www.sei.cmu.edu/news-
at-sei/features/2004/3/pdf/feature-1-2004-3.pdf, Software Engineering Institute, Pittsburgh, PA.

Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W., Paulk M., 1997. Software Quality and the Capability
Maturity Model, In: Communications of the ACM, Vol. 40, No. 6, 30-40.

Horvat, R.V., Rozman, I., Gyorkos, J., 2000. Managing the Complexity of SPI in Small Companies, In:
Software Process Improvement and Practice, Vol. 5, No. 1, 45-54.

HotOrigin, 2004, Ireland’s Software Cluster: Preparing for Consolidation, HotOrigin Ltd., Dublin, Ireland.
Humphrey, W.S., Snyder, T., Willis, R., 1991, Software Process Improvement at Hughes Aircraft, In: IEEE

Software, July, 11-23.
ISO, 1992, Quality Management and Quality Assurance Standards, Part 3: Guidelines for the Application of

ISO 9001 to the Development, Supply and Maintenance of Software, International Organisation for
Standardisation, Geneva, Switzerland.

Lycett, M., Macredie, R.D., Patel, C., Paul, R.J., 2003. Migrating Agile Methods to Standardised Development
Practices, In: IEEE Computer, June, 79-85.

Martin, P.Y., Turner, B.A., 1986, Grounded Theory and Organizational Research, The Journal of Applied
Behavioral Science, Vol. 22. No. 2., 141-157.

McGregor, D, 1985, The Human Side of Enterprise: 25th Anniversary Printing, McGraw-Hill/Irwin.
Miller, M., Pulgar-Vidal, F., Ferrin, D., 2002. Achieving Higher Levels of CMMI Maturity using Simulation,

In: Proceedings of the Winter Simulation Conference, December, San Diego, 1473-1478.
Murru, O., Deias, R., Mugheddu, G., 2003. Assessing XP at a European Internet Company, In: IEEE Software,

May/June, 37-43.
New Oxford Thesaurus of English, 2001, Oxford University Press.
Orlikowski, W., 1993, ‘CASE Tools as Organizational Change: Investigating Incremental and Radical Changes

in Systems Development’, in Management Information Systems Quarterly, Vol. 17, No. 3, 309-340.
Oskarsson, O., Glass, R.L., 1996. An ISO 9000 Approach to Building Quality Software, Prentice Hall, NJ.
Pitterman, B., 2000. Telcordia Technologies: Journey to High Maturity, In: IEEE Software, July/August, 89-96.
Rasmusson, J., 2003. Introducing XP into Greenfield Projects, In: IEEE Software, May/June, 21-28.
Seaman, C. and Basili, V., 1997, ‘An Empirical Study of Communication in Code Inspections’, in Proceedings

of the 19th International Conference on Software Engineering, May, Boston, MA. 17-23
Schuler, K., 1995, ‘Preparing for ISO 9000 Registration: The Role of the Technical Communicator’, in

Proceedings of the 13th International Conference on Systems Documentation, Savannah, GA, 148-154.
Sheldon, L., 1998, Grounded theory: issues for research in nursing, Nursing Standard. Vol. 12, No. 52, 47-50

Sliger, M., 2004. Fooling Around with XP: Why I Lost Interest in PMI and Took Up With Something More
Extreme, In: Better Software, May/June, 16-18.

SEI, 2006, Process Maturity Profile - CMMI SCAMPI Class A Appraisal Results Mid-Year Update 2006,
Software Engineering Institute viewed May 2007, <www.sei.cmu.edu>

Staples, M., Niazi, M., 2006. Systematic Review of Organizational Motivations for Adopting CMM-based SPI.
Technical Report PA005957, National ICT Australia.

Staples, M, Niazi M, Jeffery, R, Abrahams, A, Byatt, P and Murphy, R, 2007, An exploratory study of why
organizations do not adopt CMMI, The Journal of Systems and Software, Vol. 80, No. 6, 883–895.

Strauss, A., Corbin, J.M., 1998. Basics of Qualitative Research: Techniques and Procedures for Developing
Grounded Theory, 2nd Edition, Sage Publications.

Wilkie, F., McFall, D. McCaffery, F., 2005, An Evaluation of CMMI Process Areas for Small- to Medium-sized
Software Development Organisations, Software Process Improvement and Practice, Vol.10, No.2, 189 - 201

