
Distribution Pattern-driven Development of Service Architectures

Ronan Barrett and Claus Pahl
(Dublin City University, Ireland

(rbarrett|cpahl@computing.dcu.ie)

Abstract: Distributed systems are being constructed by composing a number of discrete com-
ponents. This practice is particularly prevalent within the Web service domain in the form of
service process orchestration and choreography. Often, enterprise systems are built from many
existing discrete applications such as legacy applications exposed using Web service interfaces.
There are a number of architectural configurations or distribution patterns, which express how a
composed system is to be deployed in a distributed environment. However, the amount of code
required to realise these distribution patterns is considerable. In this paper, we propose a distri-
bution pattern-driven approach to service composition and architecting. We develop, based on a
catalog of patterns, a UML-compliant framework, which takes existing Web service interfaces
as its input and generates executable Web service compositions based on a distribution pattern
chosen by the software architect.
Key Words: Service-oriented architecture, service composition, distribution pattern, architec-
ture modelling, service process generation.
Category: C.2.4 - Distributed Systems, D.2.2 - Design Tools and Techniques, D.2.7 - Distribu-
tion, Maintenance, and Enhancement, D.2.11 - Software Architectures

1 Introduction

Distributed systems are being constructed by composing a number of discrete compo-
nents. This practice is particularly prevalent within the Web service domain in the form
of service process orchestration and choreography, see e.g. [1, 43]. Often, enterprise
systems are built from many existing discrete applications such as legacy applications
exposed as Web services. The services are glued together through their interfaces, real-
ising a service-oriented architecture.

The development of composite Web services is often ad-hoc and requires consider-
able low level coding for realisation [1]. This effort increases with the number of Web
services in a composition or by a requirement for the composition participants to be
flexible [12]. We propose to focus on architecture modelling to address these require-
ments. We look at Web service compositions from three architectural perspectives:

– Service modelling expresses service functionality in terms of interfaces and opera-
tions.

– Workflow and process composition expresses the control and data flow from one
service to another.

– Distribution pattern-based architecting expresses how the composed system is to be
deployed.

While aspects of the first two have been considered in [39], the crucial distribution
topology of a distributed service architecture is often neglected – although critical qual-
ity factors depend on it. Distribution patterns are an abstraction mechanism useful for
architecture modelling [44]. Having the ability to model, and thus alter the distribution
pattern, allows an enterprise to configure its systems as they evolve, and to meet varying
non-functional requirements. Distribution patterns reflect for instance the centralised or
decentralised nature of these systems. Patterns express proven techniques, which make
it easier to reuse successful designs and architectures [22].

Having detailed high-level models also allows for the generation of a fully exe-
cutable system based entirely on the model [34]. Our architecture models consist of
services as building blocks and compositions based on distribution patterns. Executable
service processes can be generated based on the service distribution architecture, requir-
ing only limited intervention from a software architect, who determines the distribution
pattern to define and configure a model. Modelling of the composed system’s distri-
bution pattern is important, as this currently often neglected modelling aspect provides
insight into the non-functional properties realised by a distributed system. Emphasising
distribution patterns allows architecture design to be driven by quality considerations.

Motivated by these concerns, we have developed languages and techniques for the
distribution pattern-driven modelling of compositions in service architectures. An as-
sociated benefit of our modelling approach is the fast and flexible deployment of com-
positions. Our approach provides a high-level model which intuitively expresses, and
subsequently generates, the system’s distribution pattern using a UML2-based activity
diagram [18]. We develop, based on a catalog of patterns, a UML-compliant framework,
which takes existing Web service interfaces as its input and generates executable Web
service compositions based on a distribution pattern chosen by the software architect. A
central constraint of distribution pattern-driven architecture is that distribution is only
one aspect in the architecture of a complex system. Consequently, integration and in-
teroperability of the notations and techniques presented here with other techniques and
languages is a prerequisite for the effectiveness of the approach. We therefore address
integration and interoperability in particular.

The paper is structured as follows: Section 2 introduces service architecture princi-
ples, motivates distribution patterns in the context of service architectures and outlines
a pattern catalog; Section 3 introduces our modelling and transformation approach. In
Section 4, we apply the techniques in the context of a banking sector case study and
discuss some quality implications. In Section 5 we evaluate the approach; Section 6
presents related work; and, finally, Section 7 concludes the paper.

2 Service Architectures and Distribution Patterns

2.1 Service Architectures

Services, particularly Web services, are building blocks of compositions in distributed
environments. Services are composed to processes, executed by suitable process en-
gines. There is an important difference between two of the modelling aspects within a
process-oriented service composition, namely workflows and distribution patterns [44].
Both aspects refer to the high-level cooperation of components, termed a collaboration,
to achieve some compound task [37].

– We consider workflows as compositional orchestrations, where the internal and ex-
ternal messages to and from services are modelled.

– In contrast, distribution patterns are considered as compositional choreographies,
where only the external messages flow between services is modelled.

Consequently, the external control flow between services can be considered orthogonal
to the internal orchestration perspective. As such, a choreography can express how a
system would be deployed. The internal workflows of these services shall be neglected
here, as there are many approaches to modelling the internals of such services [15, 21].
Distribution includes additionally aspects in relation to the location and role of partic-
ipants in a composition. In particular this interaction of different roles in a distributed,
networked environment determines crucial non-functional properties.

2.2 Distribution Patterns

Distribution patterns are frequently used solutions that express how a composed system
is to be assembled and subsequently deployed in terms of its distribution topology.
These patterns are platform-independent [20], as the patterns are not tied to any specific
implementation language. The patterns identified are architectural patterns, in that they
define reusable architectural artifacts evident in software systems [8].

To help document the distribution patterns, a modelling notation is required. UML
is a standardised graphical language for the modelling of software systems [28]. UML
documents a system using two categories of diagrams, structural and behavioural. Struc-
tural diagrams describe the static structures of a system along with the interrelations
between components of the system. Behavioural diagrams describe the dynamic be-
haviour of a system. Structural diagrams such as UML class diagrams are appropriate
for service modelling, while UML activity diagrams or interaction diagrams are appro-
priate for modelling both workflows and distribution patterns. While interaction dia-
gram seem initially more intuitive in the context of the choreographic composition, we
use activity diagrams that have been extended recently by connectivity features (such as
pins and control flow elements that link to Web service technologies). Activity diagrams
more naturally suited to capture process composition.

Centralised Shared-Hub

Hub/Spoke Spoke Spoke

Decentralised Shared-Peer

Peer Peer Peer

Figure 1: Examples of distribution patterns

2.3 Pattern Catalog

In order to exploit the potential of pattern-driven service composition, the consideration
of a variety of patterns is beneficial. Distribution patterns need to convey the following
aspects:

– structural connectivity of services as components,

– message interaction direction (internal perspective),

– activation/initiation and response (external perspective).

We will now introduce a distribution pattern catalog. The patterns presented here
were identified by systematically researching distribution patterns in existing network-
based systems. Many of the patterns discussed here are identified in [16]. We applied
the extracted patterns to five different application architecture designs – details are pre-
sented in Section 6.2. We have combined the different findings in the context of service
architectures based on our own review [5].

We have identified seven patterns in three pattern categories, as follows:

– Core patterns

• Centralised Hub: Manages the composition from a single location, normally
the participant initiating the composition. The composition controller (the hub)
is located externally from the service participants to be composed (the spokes).
Two messages are exchanged between the hub and a spoke for each spoke ex-
ecution i.e. synchronous communication. The composition completes after the
final spoke has completed execution and has returned a response to the hub.
This is the most popular, default distribution pattern configuration for compo-
sitions.

• Decentralised Peer: Distributes the management of the composition amongst
the composition. The participant which initiates the composition is located ex-
ternally from the other participants. Only one message is exchanged between
the caller and the callee for each peer execution (asynchronous communica-
tion). The composition completes after the final peer has completed execution

and has returned execution control to the peer which commenced the composi-
tion.

These are illustrated in Figure 1.

– Auxiliary patterns

• Ring: Identical participants acting as a cluster. The pattern by itself does not
facilitate composition and is normally used in association with other patterns.
There are no start and end points to the ring pattern. The Ring pattern provides
fault-tolerant infrastructure to a Web Service composition. The specific ring
implementation defines, at the mirror head, the algorithm for determining how
the load is delegated amongst the ring participants.

– Complex patterns

• Hierarchical: Tree-based structure featuring a number of controller hubs. The
pattern is related to the Centralised pattern. Two messages are exchanged be-
tween the hub and a spoke for each spoke execution (synchronous communi-
cation). Two messages are also exchanged whenever hubs intercommunicate.
The composition completes after the final spoke has completed execution and
has returned a response to its hub, which then returns control to its owning hub,
until finally the parent hub regains control of the composition and terminates.

• Ring + Centralised: The Ring + Centralised pattern combines the Ring pattern
with the Centralised pattern. This complex pattern eliminates the single point of
failure and communication bottleneck at the central hub by providing a number
of identical redundant hubs organised as a ring. As with the core centralised
pattern, messages are exchanged between the hub and a spoke for each spoke
execution (synchronous communication). The composition completes after the
final spoke has completed execution and has returned a response to the hub.
The specific ring implementation defines the algorithm for determining how
the load is delegated amongst the ring participants.

• Centralised + Decentralised: The Centralised + Decentralised pattern combines
the Centralised pattern with the Decentralised pattern. This complex pattern al-
lows a number of participants to function as hubs locally whilst functioning as
peers within the larger composition. Only one message is exchanged between
each hub/peer for each execution (asynchronous communication). The com-
position completes after the final hub/peer has completed execution and has
returned execution control to the hub/peer which commenced the composition.
Two messages are exchanged between the hub/peer and a spoke for each spoke
execution (synchronous communication).

• Ring + Decentralised: The Ring + Decentralised pattern combines the Ring
pattern with the Decentralised pattern. This complex pattern uses one or more

rings to provide redundant copies of participants. As with the core decen-
tralised pattern, only one messages is exchanged between the caller and the
callee for each peer execution (asynchronous communication). The composi-
tion completes after the final peer has completed execution and has returned
execution control to the peer which commenced the composition. The specific
ring implementation defines the algorithm for determining how the load is del-
egated amongst the ring participants. An example of this pattern in an existing
network context, is a file sharing system whose peers have load balancing en-
abled.

Core patterns capture the principle forms of distribution that can commonly be observed
in service compositions. Auxiliary patterns are patterns which can be combined with
core patterns to alter a given non-functional quality attribute of a core pattern. Complex
patterns can be formed by combining core patterns – we have presented a selection of
common ones.

3 Architecture Modelling and Transformation

Our approach to distribution pattern modelling and subsequent Web service composi-
tion generation consists of a number of modelling, validation and generation activities,
as illustrated in Figure 2. We will introduce and discuss the three activities in the sub-
sequent subsections.

3.1 Modelling and Transformation Languages

We introduce the modelling and transformational techniques we have developed for
the distribution pattern-driven service architecture approach. There are three specific
techniques:

– Modelling: Pattern-driven service architecture modelling based on a UML activity
diagram extension using the profile mechanism.

– Validation: Internal representation and analysis of architecture and model correct-
ness using the distribution pattern language DPL.

– Generation: Generation of composite executable service processes from the archi-
tecture models.

The basis of our modelling and transformation integration and interoperability ap-
proach (Fig. 3) is outlined by Bézivin in [3], and previously utilised in a Web-based
engineering context by Koch in [26]. MOF plays the central role in defining a range
of notations and integrating them into a conversion and transformation framework. We
outline the model transformation pattern from UML to our distribution pattern language
DPL, and subsequently to a collaboration language. Relations are abstract specifications

Web service
Interfaces

Pattern
Catalog

Distribution
Architecture

Model

Distribution
Pattern
Instance

Executable
Web Service

Process

UML
activity

diagram
profile

DPL
meta-
model

collaboration
meta-
model

convert

transform

transform

import

validate

defines

defines

defines

Figure 2: Overview of modelling approach

of transformations (conversion between UML and DPL and generation of executables
from DPL) and transforms are their actual implementation [9]. Is it important here to
distinguish the different purposes of the UML profile and DPL. The UML profile en-
hances UML activity diagrams with distribution-specific aspects. It acts as an interface
language. DPL is an internal, intermediate language that captures the same in formation
as the UML extension. However, its purpose is to allow more interface languages than
UML to be dealt with and it also act as the basis for internal processing like analysis
and transformation.

Although our modelling solution is independent of the actual execution language,
it is important to discuss (executable) collaboration languages to fully understand how
a modelled system will interact at run time. Ultimately, the patterns will be realised at
this level. Two collaboration languages, Web Service Business Process Execution Lan-
guage (WS-BPEL) and Web Service Choreography Description Language (WS-CDL)
[37], can enable the runtime enactment of distribution pattern-based compositions. WS-
BPEL is an orchestration language whilst WS-CDL is a choreography language. The
WS-CDL language provides the most obvious link to distribution pattern specification
as only the messages exchanged between collaborators are considered. However, the au-
thors of [13] argue that both languages are appropriate target languages for our context.
It is interesting to note that the use of WS-BPEL in a centralised distribution pattern
is considered inevitable by the authors of [44]. A WS-BPEL engine may be used in a
peer-to-peer distribution pattern, which improves throughput and scalability and results

MOF

DPL
Meta-Model

UML Meta-Model/
DPL Profile

Distribution Pattern
Model (Activity Diagram)

DPL
Model (XML)

Collaboration
Model (XML)

Collaboration
Meta-Model

Transform Transform

M3

M2

M1

PIM PSM

Relations Relations

Figure 3: Modelling and transformation languages

in lower response times when compared to the same engine in a centralised pattern.

3.2 Modelling of Distribution Architectures

In order to be compatible with other modelling notations, we develop a UML-based
graphical modelling notation for distribution pattern-driven service composition. We
introduce the notation and the architecture modelling activities now.

3.2.1 UML-based Distribution Pattern Modelling

The first architecture modelling activity takes a number of Web service interfaces in the
form of WSDL specifications as input, and transforms them to the UML 2.0 modelling
language, standardised by OMG [18], using a UML 2.0 model generator we developed
for our environment. These interfaces represent the services which are to be composed.
The model generated is an initially unconnected collection of Web services interfaces,
i.e. each service is logically separated as no composition has yet been defined.

As WSDL interfaces are constrained by XML schemas, their structure is well de-
fined. This allows us to transform the interfaces into a UML 2.0 activity diagram – an
approach also considered by [15]. The UML model generated contains many of the
features of UML 2.0 such as Pins, CallBehaviorActions and ControlFlows. A UML
activity diagram is chosen to model the distribution pattern as it provides a number of
features which assist in visualising the distribution pattern, while providing sufficient
information to drive the generation of the executable system. Activity diagrams show
the sequential flow of actions, which are the basic unit of behaviour, within a system and
are typically used to illustrate workflows. We define our pattern architecture notation in
terms of MOF M2 metamodels (see Fig. 3) in two steps:

– Use of existing UML activity diagram elements to model principles of service dis-
tribution.

– Extension of UML activity diagrams using the profile mechanism to cater for spe-
cific distribution aspects.

We start with an explanation of the central UML activity diagram metamodel elements
that we utilise to model distribution in service architectures:

– UML ActivityPartitions, also known as swim-lanes, are used to group a number of
actions within an activity diagram. In our model, these actions represent WSDL op-
erations. Any given interface has one or more ports that has one or more operations,
all of which reside in a single swim-lane.

– To provide for a rich model, we use a particular type of UML action to model
the operations of the WSDL interface. These actions, called CallBehaviorActions,
model process invocations.

– These actions are enhanced by an additional modelling construct called pins. There
are two types of pins, InputPins and OutputPins, which map directly to the parts of
the WSDL messages going into and out of a WSDL operation.

For our UML activity diagram models to effectively model distribution patterns, we
require the model to be more descriptive than the standard UML dialect allows. We use a
standard extension mechanism of UML, called a profile [20], to enhance the metamodel.
Profiles define stereotypes and subsequently tagged values that extend UML constructs.
Each time one of these derived constructs is used in our model we may assign values to
its tagged values. An overview of our profile can be seen in Fig. 4. The profile extends
the Activity, ActivityPartition, CallBehaviorAction, ControlFlow, InputPin and Output-
Pin UML constructs. This extension allows distribution pattern metadata to be applied
to the constructs via the tagged values. For example, the distribution pattern is chosen
by selecting a pattern from the DistributionPattern enumeration and assigning it to the
distribution pattern tagged value on the DPLMetadata construct.

3.2.2 Distribution Pattern Definition

The initial UML-based services model is the basis for the software architect to select a
distribution pattern and apply an instance of that pattern to the UML model.

– Pattern Instantiation: First, the architect selects a distribution pattern and then as-
signs appropriate values to the tagged values of the stereotypes to define the pattern
instance. Guided by a chosen distribution pattern and restricted by the UML meta-
model/DPL Profile (see Figure 4), the architect must determine the service distri-
bution architecture model by instantiating connections between individual pattern
instance elements as services and map the messages from one service to the next.
Based on the chosen pattern, the architect defines the sequence of actions by con-
necting CallBehaviorActions to one another, using UML ControlFlow connectors,

Figure 4: UML profile for modelling distribution patterns

each of which is assigned an order value. The architect then connects up the UML
InputPins and OutputPins of the model, using UML ObjectFlows connectors, so
data is passed through the composition.

– Generation Customisation: The architect can initialise some distribution pattern-
specific variables on the model, which will be used to generate a distribution pattern
instance. This in turn provides the necessary details to generate executable service
compositions. The partial automation of this step using semantics is considered in
our previous work [10].

3.3 Validation of Distributed Pattern Architectures

Before an executable service process is generated, the service architecture model is
transformed into an abstract intermediate representation – the Distribution Pattern Lan-
guage (DPL). Its purpose it to provide an internal notation – independent from interface
languages such as UML, thus allowing different input languages to be used. Analysis
and validation can be carried out before executables are generated.

3.3.1 Intermediate Representation – Distribution Pattern Language

The pattern-based service distribution model is transformed to a distribution pattern in-
stance using the distribution pattern generator. The transformation and resultant pattern
instance are restricted by the DPL meta-model. This document, which is at the same

level of abstraction as the UML model, is an internal representation of the distribution
pattern instance which can be validated. This pattern instance, represented in XML us-
ing our specification language Distribution Pattern Language (DPL), is called a DPL
document instance.

We follow a two-pronged semantic approach for both languages and transforma-
tions here:

– A definition in terms of MOF to obtain interoperable languages and transforma-
tions, suitable for platforms such as UML, EMF, ECore, XML, XMI, in order to
guarantee interoperability.

– Formal definitions of languages and transformations based on graph theory are used
to formally integrate and provide a basis to analyse the models and transformations.

In this paper, as stated above, we will focus on the first aspect. However, we briefly
outline the principles of the formal semantics. The DPL semantics are defined in terms
of attributed, typed directed graphs – a common formal framework for process-oriented
compositions [42, 17, 7]:

– Each node represents a service with its type, which reflects the role the service
plays in a distribution topology.

– Attributes capture the meta-level stereotype attributes.

– Edges represent the service connectivity.

These three graph elements are directly reflected by the three sections of a DPL in-
stance. As [42, 7] demonstrate, this approach is also suitable to formally define UML
activity diagrams and, therefore, allows us to verify the correctness of the mapping
between UML and DPL.

The DPL specification, written in XML Schema, has no reliance on UML and so any
number of modelling techniques may be used as an input. The use of this new language
allows non-MOF compliant description frameworks, such as Architectural Description
Languages and formal specification language suitable for distribution modelling such
as the π-calculus to be used in place of UML as the transformation source [32].

3.3.2 Distribution Architecture Validation

The DPL document instance, representing the distribution pattern modelled by the soft-
ware architect, is verified at this stage by the distribution pattern validator to ensure the
values entered as attributes are valid. If incorrect values have been entered, the architect
must correct these values before proceeding to the generation stage. Validation of the
distribution pattern instance is essential to avoid the generation of an invalid system.

The DPL document instance is verified against the DPL Schema by the distribution pat-
tern validator. The verification process ensures the distribution pattern selected by the
software architect is compatible with the model settings.

Validating attributes is one possible form of validation. At the DPL-level, the fol-
lowing analyses are in general possible:

– Attribute consistency (as explained above).

– Structural pattern graph consistency (such as detecting incorrect cycles in cen-
tralised architectures or identification of isolated services).

– Structural semantic consistency (such as the correct association of node types cor-
responding to the graph structure-implied role).

A suitably constrained architecture model editor can already detect the latter two cat-
egories. Nonetheless, these two are important if models are imported and a previous
validation cannot be relied on. The pattern definition could also be restricted by the
QVT relations, which we use and which would make some validation considered re-
dundant. However, we envisage supporting non-QVT compliant modelling languages
in the future.

3.4 Generation of Executable Service Processes

Finally, the executable system generator takes the validated DPL document instance
and generates the code and supporting collaboration document instances required for
a fully executable system. These documents are restricted by the appropriate collabo-
ration meta-model. This executable system realises the Web service composition using
the distribution pattern applied by the software architect. All that remains is to deploy
the generated artifacts and supporting infrastructure to enable the enactment of the com-
posed system. Additional WSDL interfaces are also generated, if necessary. Dynamic
deployment of the executable system is considered in more detail in [11]. We only in-
troduce the transformation technique here.

Our relations are defined at the meta-model level using the recently standardised
QVT (Query/View/Transformation) graphical notation [29]. An example of a QVT re-
lation can be seen in Fig. 5. OperationToVariable defines the relation between a DPL
Operation artifact and BPEL Variable artifacts. The relation is called by another rela-
tion, the PatternDefinitionToProcess. We have implemented the transformation using
ATL, a hybrid model transformation language that is well-supported by tools. QVT
has acted as an abstract specification for the ATL transformation implementation. The
following ATL specification implements the QVT definition from Fig. 5:

rule OperationToVariable (type : String, op : DPL!Operation) {
to

var BPEL!Variable(name <- op.eContainer().eContainer().name +
op.name + type.messageType <- mes),

mes : BPEL!Message(qName <- op.eContainer().eContainer().ns +

Figure 5: QVT specification – Operation To Variable

’:’op.name+type)
do{var:}

}

Using QVT and the underlying graph-theoretic foundations, which define the trans-
formations formally [40], we have analysed our approach for completeness by verifying
the preservation of semantics between related meta-models.

A collaboration language like WS-BPEL is the central target language. However,
a Deployment Catalog notation complements the generation process. While DPL es-
sentially provides deployment-enhanced architecture and composition information, the
deployment catalog notation provides in addition to the DPL instances the constructs to
enumerate the interfaces of a distribution pattern based deployment on a composition
engine. It enables the composition engine to find the interfaces and dependent resources
within a deployment archive. This notation abstracts specifications used by WS-BPEL
engines such as ActiveBPEL to organise deployment information. It fills endpoint in-
formation with the corresponding address and service name data.

3.5 Discussion

Before describing a development scenario and the actual implementation, a key obser-
vation in relation to the transformation shall be discussed. In the transition from abstract
to concrete, explicit information gets lost and is embedded into the created artifacts.
Both distribution characteristics described through patterns, but also associated quality
properties are affected:

– Distribution: Properties such as the node types that explain the role in a pattern
become implicit, but visible (and not measurable) as structural topology properties
of the executable system.

– Quality: Explicit attributes re-emerge as observable (sometimes measurable) qual-
ity properties (NFPs) of the executable system.

Figure 6: UML sequence diagram for bank case study

The core graph that defines composition and connectivity remains. It is important to
preserve the structure in the transition from explicit to implicit as it defines the archi-
tecture.

4 Pattern-based Service Architecture Development

We illustrate the development of a service architecture based on the presented pattern
techniques for a banking case study now, before widing the development perspective
by discussing the link to quality-driven development in the presence of patterns. Qual-
ity considerations can determine the pattern to be selected, but can also help to refine
existing patterns.

4.1 Case Study

An enterprise banking system with three interacting business processes shall illustrate
the distribution requirements of a service architecture. We choose an enterprise bank-
ing system as it is susceptible to changes in organisational structure while requiring
stringent controls over data management – two important criteria when choosing a dis-
tribution pattern. The scenario involves a bank customer requesting a credit card facility.
The customer applies to the bank for a credit card, the bank checks the customer’s credit
rating with a risk assessment agency before passing the credit rating on to a credit card
agency for processing. The customer’s credit card application is subsequently approved
or declined. Figure 6 illustrates the interactions between a customer and the bank pro-
cesses.

4.1.1 UML-based Distribution Modelling

The banking case study provides three WSDL interfaces as input to the model gener-
ator. These interfaces represent the bank (CoreBanking), the risk assessment agency
(RiskManagement) and the credit card agency (CreditCard), see Figure 7. All three

Figure 7: UML-based service integration for bank case study

are represented in the generated UML activity diagram, albeit without any connec-
tions between them. A swim-lane is provided for each interface. Each interface has
one operation, represented as a CallBehaviorAction, which is placed in the appropriate
swim-lane. The message parts associated with each operation are represented as Input-
Pins and OutputPins. These pins are placed on the appropriate CallBehaviorAction. No
model intervention from the software architect is required at this step.

4.1.2 Distribution Pattern Selection

We must connect up the three Web services to realise a distribution pattern. Before
we do this, however, we select a distribution pattern appropriate to the bank’s situa-
tion and requirements. The decentralised distribution pattern (with dedicated peers) is
appropriate as the bank requires credit rating information from a third party and does
not wish to reveal any of the intermediate participant values of the composition. Also,
the bank anticipates a high number of credit card applications, so the load must be dis-
tributed to avoid availability issues. Other scenarios would demand the use of other dis-
tribution patterns. We apply the pattern by connecting the CoreBanking and RiskMan-
agement CallBehaviorActions together and subsequently connect the RiskManagement
and CreditCard CallBehaviorActions constructs together, using ControlFlow connec-
tors. We do not use a dedicated peer as the entry point to the composition, although this
option is available. To implement the pattern instance, the InputPins and OutputPins
of the CallBehaviorActions are connected together using ObjectFlow connectors to al-
low the message parts propagate through the distribution pattern. An extra OutputPin,
accountName, must be added to the RiskManagement CallBehaviorAction to provide
data for an InputPin, accountName, to the CreditCard CallBehaviorAction. Finally, ap-
propriate values must then be assigned to the tagged values of the stereotypes. Some
appropriate values can be seen in Table 1.

Table 1: DPLProfile stereotype attributes – graph attributes at meta-level (down to
engine-uri) and service node types (from role onwards).

DPL At-
tribute

Description UML Base Element Stereotype

distribution-
pattern

Choice of distribution pattern to be ap-
plied to composition

Activity DPLMetadata

collaboration-
language

Choice of collaboration language to en-
act composition

Activity DPLMetadata

service-name Name used by clients to reference the
composition

Activity DPLMetadata

base-
namespace

Namespace URI for the composition,
avoids name clashes

Activity DPLMetadata

namespace-
prefix

Namespace alias for the composition,
avoids name clashes

Activity DPLMetadata

operation-
name

Operation name used by clients to ref-
erence the service

Activity DPLMetadata

ns Namespace URI of the participant,
avoids name clashes

ActivityPartition DPLPartition

interface-uri URI specifying the location of the par-
ticipant’s interface

ActivityPartition DPLPartition

engine-uri URI specifying the location of the en-
actment engine

ActivityPartition DPLPartition

role Choice of roles for the participant from
the Role enumeration

CallBehaviorAction DPLParticipant

is-
correlation-
variable

Unique identifier field for a composi-
tion

Pin DPLMessage

order Execution order assigned to action ControlFlow DPLControlFlow

Finally, if the organisational structure of the bank is in flux, a peer-to-peer distri-
bution pattern would provide a future-proof architecture in that peers can be swapped
in and out based on new or changing business partners. A centralised distribution pat-
tern would be appropriate if the bank controls all three services being composed and
does not expect to receive a high number of credit card applications. This pattern is
appropriate as the bank controls all the data being processed, i.e. there are no data se-
curity issues. The low number of expected credit card applications should not cause
availability problems on the server.

4.1.3 Intermediate DPL Representation

Fig. 8 shows a DPL document instance for the case study. Three sections can be distin-
guished in the instance:

– It begins with the metadata attribute instantiation (pattern definition) as
defined in Table 1.

– Then, the nodes (nodes) declare the services involved.

– Finally, the mappings (mappings) connect the service to reflect interaction.

The message names and message parts have been truncated for space reasons. The
document instance content is minimal to provide for easy parsing. A reference to the
URI of the Web service interface is maintained in the document instance to allow for
querying by other tools if necessary.

Many of the values in Fig. 8 are the same as the values applied by the software
architect previously, such as distribution pattern and service name. The ControlFlow
connectors previously defined between the CallBehaviorActions are used to assign an
order value to the dpl:nodes, which themselves are derived from the CallBehaviorAc-
tions (getAccountName, getRiskAssessment and getCreditCard) in the UML model.
The ObjectFlow connectors between the InputPins and OutputPins are used to define
the mappings between dpl:nodes. The first dpl:node does not require any explicit Ob-
jectFlow connectors as the initial values passed into the system are used as its input
automatically.

4.1.4 Validation and Generation

As the decentralised dedicated-hub distribution pattern has been chosen, there must be
at least two dpl:nodes having a peer role and there must not be any dpl:nodes with a
hub role – which are two examples of structural consistency problems. If any errors are
detected they must be corrected by the software architect, usually by returning to the
modelling stage.

Three WS-BPEL interaction logic documents are created to represent each of the
three peers in the distribution pattern. Additionally, three WSDL interfaces are created
as wrappers to each interaction logic document, enabling the composition to work in a
decentralised environment.

4.2 Distribution Patterns and Quality of Service

Different distribution patterns realise different non-functional properties. Quality of
Service (QoS) is a term under which some of these properties are often grouped, see
e.g. [19]. Categories of qualities which affect systems at runtime are for instance per-
formance, dependability, and security [4]. These categories are of particular relevance
for the distribution architecture of service-based systems. We have outlined some exam-
ples for our case study. We have taken some specific QoS characteristics applicable to
distribution patterns from [27] and [30] to illustrate the importance of this connection.

– Performance - The timeliness with which a system can react to requests.

<?xml version="1.0" encoding="ISO-8859-1"?>
<dpl:pattern-definition xmlns:dpl="http://localhost/dpl"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://localhost/dpl dpl.xsd">

<dpl:collaboration-language>WS-BPEL</dpl:collaboration-language>
<dpl:distribution-pattern>decentralised</dpl:distribution-pattern>
<dpl:service-name>BankingPeerToPeer</dpl:service-name>
<dpl:base_namespace>BankingPeerToPeer</dpl:base-namespace>
<dpl:namespace-prefix>http://foo.com/wsdl/</dpl:namespace-prefix>
<dpl:operation-name>applyForCC</dpl:operation-name>
<dpl:correlation-variables>

<dpl:variable name="accountNumber" type="xsd:int"/>
</dpl:correlation-variables>
<dpl:nodes>

<dpl:node returns="true" name="CoreBanking" ns="http://CoreBanking"
uri="http://local/CB?WSDL" euri="http://local:1234/" order="1" role="peer"/>

<dpl:node name="RiskManagement" ns="http://RiskManagement"
uri="http://local/RM?WSDL" euri="http://local:1234/" order="2" role="peer">

<dpl:mappings>
<dpl:mapping>

<dpl:from message="getANResponse" part="getANReturn"
node="CoreBanking"/>

<dpl:to message="getRARequest" part="accountName"
node="RiskManagement"/>

</dpl:mapping>
</dpl:mappings>

</dpl:node>
<dpl:node name="CreditCard" ns="http://CreditCard"
uri="http://local/CC?WSDL" euri="http://local:1234/" order="3" role="peer">

<dpl:mappings>
<dpl:mapping>

<dpl:from message="getRARequest" part="accountName"
node="CoreBanking"/>

<dpl:to message="getCCRequest" part="accountName"
node="CreditCard"/>

</dpl:mapping>
<dpl:mapping>

<dpl:from message="getRAResponse" part="getRAReturn"
node="RiskManagement"/>

<dpl:to message="getCCRequest" part="isRisk"
node="CreditCard"/>

</dpl:mapping>
</dpl:mappings>

</dpl:node>
</dpl:nodes>

</dpl:pattern-definition>

Figure 8: DPL document instance

• Latency - Speed of response to requests.

• Throughput - Number of requests handled within a period of time.

• Capacity - Number of requests that can be dealt with without a drop in through-
put or increase in latency.

– Dependability - Measure of the reliance that can be placed upon a system function-
ing correctly.

• Availability - A measure of the system’s up-time.

• Reliability - Ability of the system to remain available over time.

• Security - Protection of the system and its data from unauthorised use.

• Autonomy - Measure of independence of system’s discrete parts.

The categories are used to associate qualities to distribution patterns and to classify or
discover patterns based on these quality attributes [24]. However, it needs to be noted
that this quality association is still an open problem in the research community.

To illustrate the principles, we look at the two most prevalent patterns – centralised
and decentralised in more detail – before briefly describing the other patterns. The qual-
ity attributes of the core patterns which we discuss are documented by [12, 13, 44]. The
centralised and decentralised patterns are the core patterns that embody two core prin-
ciples of distribution:

– Centralised: In a centralised shared-hub pattern [12], a composition is managed in a
single location by the enterprise initiating the composition. This pattern is the most
widespread and is appropriate for compositions that only span a single enterprise.
The advantages are ease of implementation and low deployment overhead, as only
one controller is required to manage the composition. However, this pattern may
suffer from a communication bottleneck at the central controller. This represents a
considerable scalability and availability issue for larger enterprises.

– Decentralised: The decentralised shared-peer pattern [44] addresses many of the
shortcomings of the centralised shared-hub pattern by distributing the management
of the composition amongst its participants. This pattern allows a composed system
to span multiple enterprises while providing each enterprise with autonomy [41]. It
is most important for security that each business acts upon its private data but only
reveals what is necessary to be a compositional partner. In a decentralised pattern,
the initiating peer is only privy to the initial input data and final output data of a
composition. It is not aware of any of the intermediate participant values, unlike
a centralised pattern. The disadvantages of a decentralised pattern are increased
development complexity and additional deployment overheads.

Hub-and-Spoke and Peer-to-Peer are examples of centralised and decentralised pat-
terns, respectively. These may be applied as variants of the first two distribution patterns
when additional autonomy, scalability and availability is required. Other distribution
patterns include the ring pattern, which consists of a cluster of computational resources
providing load balancing and high availability, and the hierarchical pattern, which fa-
cilitates organisations whose management structure consists of a number of levels, by
providing a number of controller hubs.

There are also complex variants of these distribution patterns, whereby a mix of
two or more patterns is applied. Complex patterns are useful in that the combination

of patterns often results in the elimination of a weakness found in a core pattern. An
example of a complex pattern is a “ring + centralised pattern”, which provides clustering
for a highly loaded central controller. For example, the addition of a dedicated hub to
a centralised distribution pattern allows a composition to be initiated by a participant
external to a composition. A similar scenario is where an additional peer is added to a
decentralised distribution pattern to initiate a composition.

5 Implementation

TOPMAN (TOPology MANager) is our solution to enable the modelling of distribution
topologies based on patterns using UML 2.0 and subsequent Web service composition
generation based on the architecture outlined in Fig. 2 [5]. The tool utilises Eclipse
technologies. As already emphasised, the integration and interoperability of the nota-
tions and techniques presented here with existing tool support for service architecture
development is a crucial requirement for the applicability of our solution. Eclipse is the
platform we are using to integrate modelling and transformation tools. Eclipse EMF
editors are used to create ECore models:

– Modelling interface tools like RSA can be embedded to support modelling activi-
ties.

– ATL is the implementation language for the model transformations and the code
generation.

– XML is the format to represent DPL instances.

Modelling and generation define two categories of tool components that shall now be
discussed.

5.1 Modelling

The UML 2.0 model generator uses the transformation framework ATL to transform
the WSDL interfaces of the Web services participants, represented in the form of class
diagrams, to a UML 2.0 activity diagram [23]. The model generated includes a reference
to our predefined UML profile for distribution patterns. We have encountered some
issues during the development of our tool. As noted in [38], WSDL tools do not all
generate WSDL interfaces according to the same naming conventions. Consequently,
we must tailor the UML 2.0 model generator to specific WSDL tool idiosyncrasies.

A number of tools may be used to describe the distribution pattern. IBM’s commer-
cial tool Rational Software Architect (RSA) is compatible with UML 2.0 and supports
many of the UML 2.0 features. The tool has a GUI which allows the software archi-
tect to define distribution architectures. Upon completion, the model can be exported
back for further processing by TOPMAN. An alternative to IBM’s commercial tool is
UML2, an open source tool supporting UML 2.0, which allows the model to be viewed
and manipulated in an editor.

5.2 Generation

The distribution pattern generator uses ATL to transform the UML 2.0 model to a DPL
instance document. The DPL document instance is then checked for correctness by
an XML-based validating parser and semantics analyser. Finally, the DPL document
instance is used to drive the executable system generator, resulting in the creation of
an executable composition. Within the executable system generator, ATL is used to
generate the interaction logic and interface documents needed by a workflow engine to
realise the distribution pattern. Each transformation is written to implement a previously
defined QVT relation between source and target meta-models. Ideally, a choreography-
based specification, such as WS-CDL, should be used. However, there is no suitable
enactment engine currently available for WS-CDL. Instead, we choose to use an open
source WS-BPEL engine, activeBPEL. Although WS-BPEL is an orchestration engine,
we can use it to apply distribution patterns based on the work in [13].

6 Evaluation

We have presented a pattern catalog, modelling and description notations, and conver-
sion and generation techniques. To assess our approach, we use the criteria set out in
[39], along with some of our own success criteria, for the respective components of our
solution. A number of specific concerns need to be observed:

– Target user profile: Our approach, technique and implementation are targeted at
software architects, who should be comfortable working with patterns and CASE-
based tools which assist in the generation of executable systems.

– Tool integration: Our modelling effort is XMI-based and can therefore be integrated
with both commercial and open source tools. Integration of the technique in exist-
ing development tool environments is paramount (thus our focus on notation and
technique interoperability).

We apply different, quantitative and qualitative analysis techniques in our evalua-
tion. The catalog is quantitatively evaluated with respect to usability. The language and
techniques are looked at in terms of usability and correctness, which in particular in the
case of correctness require qualitative methods.

6.1 Catalog

We have identified a number of distribution patterns, collected as a pattern catalog,
and have shown how patterns can be expressed adequately using UML with our DPL-
Profile extension and in XML, using DPL. The catalog is adequate in that our UML
model and associated profile is sufficiently rich to generate a DPL document instance
and subsequently all the interaction logic and interface documents needed to create an

executable system. We have evaluated the catalog in terms of four measures: usage,
coverage, utility and precision as outlined in [14]. We have evaluated the catalog based
on five different application case studies [5]:

– Adding High Availability and Autonomic Behavior to Web Services

– Service Composition Modeling

– A p2p architecture for dynamic executing GIS web service composition

– Using a rigorous approach for engineering Web service compositions

– Migration to web services oriented architecture

The attributes usage, coverage, utility and precision result in the following measured
values for the five applications:

– Usage: Ratio of pattern usage to total number of patterns in the catalog. A ratio
of 7:4 (0.571) indicates that the majority of our patterns occur in common appli-
cations. The usage measure value of 0.571 shows that of the seven patterns in our
catalog only four unique patterns were actually used in the case study applications.
The centralised pattern occurs in two of in the case studies. No usage of three pat-
terns, ring + centralised, centralised + decentralised and ring + decentralised was
found in the case studies.

– Coverage: Ratio of pattern usage to total number of patterns in the application. A
ratio of 5:5 (1.0) shows that patterns found in the applications were also part of our
catalog.

– Utility: Average times a catalog is used in a given application. A ratio of 5:4 (0.8)
indicates that some patterns such as the centralised ones are more prevalent than
others. Of the four patterns used in the case study applications one is used twice,
while three are used only once. This indicates, at least in our small use case sample,
that the centralised distribution pattern is more prevalent than the other patterns.
The highest value possible for this measure when considering architectural patterns
is one.

– Precision: Ratio of pattern usage to number of adaptations required necessary to
make the catalog useful. A ratio of 1:1 indicates that we found no reason to adapt
patterns during our evaluation. However, it should be noted that architectural pat-
terns do not normally require adaptation as they are at a very high level of abstrac-
tion.

In conclusion, we can say that the catalog is adequate as it provides common patterns,
but also patterns for a range of rarer situations. The catalog provides a classified collec-
tion of reusable distribution topology solutions.

6.2 Languages and Techniques

Languages as well as validation and transformation techniques are the components of
our solution. We look at selected properties of these in the context of our aim to provide
a cost-effective interoperable service architecture method. An empirical evaluation us-
ing the TOPMAN tool and its integration into an existing tool landscape and the use of
application case studies have complemented the analytical evaluation components.

– Language Usability: Our modelling approach, which visualises the distribution
pattern, should be intelligible to software architects – which is achieved through
a UML profile. As the model is platform-independent, implementation-level de-
tails are avoided. The independence of our approach from platform- and language-
specific aspect makes it reusable. UML models and DPL instance documents are
modelled at the platform-independent level, so there is no reliance on any collabo-
ration language.

– Transformation and Validation Correctness: We have verified our model transfor-
mations using declarative QVT relations between corresponding meta-models. The
graph-theoretic model additionally provides the link between the semantics of the
individual notations and the transformation specification. In addition to preserving
the functional semantics of the abstract architecture in the generated executable, our
evaluations (in particular based on the case studies mentioned in the catalog eval-
uation and below in the context of maintainability) demonstrate that the qualities
associated to the patterns are indeed transferred onto the executable system.

A central benefit of a more automated solution is a cost-effective development pro-
cess. We have compared the architecture development with a manual architecture design
and implementation. While coding is automated here, in the manual approach consider-
able service orchestration code (WS-BPEL and WSDL) has to be produced. In addition,
maintenance is improved, further reducing costs. Our approach allows easy manipula-
tion of the system’s distribution pattern at a high level of abstraction. We have used the
ALMA (Architecture Level Modifiability Analysis) method to evaluate maintainability
[31]. Five change scenarios were selected: adding, removing and updating participants
(3 scenarios), changing the distribution pattern, and changing the execution engine. Due
to automation, all scenarios benefit from our approach. The most substantial benefit
is gained in the context of changing a pattern. Here, the manipulation at the graphi-
cal, UML-based level simplifies the architect’s work significantly. More details can be
found in [5].

7 Related Work

We will now introduce some related work and contrast their approaches to our solu-
tion. Two workflow management systems shall be discussed that motivate and provide

concrete implementations for two of the distribution patterns explored in this paper.
However, neither system provides a standards-based modelling solution to drive the
realisation of the chosen distribution pattern.

– The first system, DECS [44], from which the distribution pattern term originates, is
a workflow management system, which supports both centralised and decentralised
distribution patterns, albeit without a code generation element. DECS defines ele-
mentary services as tasks whose execution is managed by a coordinator at the same
location.

– The second system, SELF-SERV [41], proposes a declarative language for compos-
ing services based on UML 1.x statecharts. SELF-SERV provides an environment
for visually creating a UML statechart which can subsequently drive the generation
of a proprietary XML routing table document. Pre- and post-conditions for suc-
cessful service execution are generated based on the statechart inputs and outputs.
The authors’ more recent work [25] considers the conformance of services with a
given conversational specification using a more complete model-driven approach.
A mapping from SELF-SERV to WS-BPEL is also investigated.

Grønmo et al. [39, 15] consider the modelling and building of compositions from
existing Web services using MDA, an approach similar to ours. However, they consider
only two modelling aspects, service (interface and operations) and workflow models
(control and data flow concerns). The system’s distribution pattern is not modelled,
resulting in a fixed centralised distribution pattern for all compositions. Their modelling
effort begins with the transformation of WSDL documents to UML, followed by the
creation of a workflow engine-independent UML 1.4 activity diagram, which drives
the generation of an executable composition. Additional information required to aid the
generation of the executable composition is applied to the model using UML profiles.

Another approach of interest is an extension of WebML, which uses the Business
Process Modelling Notation (BPMN), instead of UML, for describing Web service pro-
cesses [6]. The authors consider the assignment of processes to servers, termed process
distribution. However, the approach is at a lower conceptual level than that of distribu-
tion patterns as communication modes between services are explicitly modelled.

A platform specific UML 1.4 based model is investigated in [21]. Here IBM’s Ra-
tional Rose (now Rational Software Architect) is used to apply a UML profile to a
WS-BPEL-based UML activity diagram. The model is capable of building a completely
executable system based on MDA, albeit based only on a WS-BPEL workflow, as a plat-
form specific model is used. As with Grønmo et al.’s work, distribution patterns are not
considered by the authors. [2] propose a mapping from UML 2.0 sequence diagrams
to a WS-BPEL workflow. The authors use MDA to drive the software development
process and provide an example of a platform-independent model being transformed
to a platform-specific model. While no executable system generation is proposed and
distribution patterns are not considered, this approach is worth considering as its does

Arief et al. DECS SELF-SERV Web-ML UMT Topman
Web Service Support Y Y Y Y Y
UML Model Support Y Y Y Y Y
XML Model Support Y Y2 Y2 Y2

ADL Model Support Y
No. of Schemes Supported n/a 21 1 2 n/a 9
Models Architectures Y
Models Orchestrations Y Y Y Y
Models Choreographies Y
Code Generation Support Y Y Y Y Y Y
Dynamic Reconfiguration Y
Static Reconfiguration Y Y Y Y Y

Table 2: Comparison of Related Approaches

(1) supports distribution scheme change, but not modelled explicitly; (2) XML support via XMI

not, in contrast with some other works, use UML activity diagram, but rather sequence
diagrams.

Beyond modelling and generation, quality has been studied. [12] provides some
interesting performance metrics to back up the use of decentralised execution instead
of centralised execution. Here, we see fewer messages exchanged in a decentralised
environment while execution time is also reduced for larger message sizes.

We have summarised the comparison with other frameworks in Table 2. We can see
how our modeling and transformation framework TOPMAN compares with the feature
set provided by the state of the art in modeling and transformation frameworks. Our
approach, like a number of other tools, considers the Web service composition domain.
We note that SELF-SERV is the only framework to support the use of an Architecture
Description Language (ADL) as its modeling language. We chose not to use ADL as
our modeling language because its various notations may not be as familiar to software
architects as the UML 2 notation. We do, however, future proof our approach by defin-
ing our own DSL, the Distribution Pattern Language (DPL), which is not tied to UML 2,
enabling future work to address a perceived need to model using ADL instead of UML
2. Some of the frameworks – DECS and SELF-SERV – provide only XML modeling
of compositions. We believe that XML is not an ideal language for defining models
because XML is overly verbose and is not human friendly when compared to a well
designed visual representation of a composition. Our modeling approach using UML 2
provides a visual representation of the composition along with bindings to XML via the
UML serialisation format XMI. This approach is also utilised successfully by UMT. An
alternative approach to UML modeling is considered by WEB-ML where BPMN mod-
els are used instead of UML to model compositions. As previously noted, our approach
could be amended to model with BPMN as we have ensured that our approach is not

UML dependent.
A number of the identified frameworks support different distribution patterns. How-

ever, only one of these approaches Web-ML, explicitly models the distribution pattern
in a similar way to our approach. Web-ML is however restricted to only two distribution
patterns. DECS also supports two distribution patterns; however it does not explicitly
model the distribution pattern, and merely provide a switch to alter the behaviour of the
executing system. Our approach, in contrast, considers seven distribution patterns.

The majority of the frameworks model compositions from an orchestration point of
view. This perspective considers the workflow of the compositions participants rather
than the non-functional requirements, which is our objective. It is worth noting that
Arief et al. consider the modeling of system architectures using UML, an approach we
also use. Also worthy of note is the Net Traveler approach, which considers both an or-
chestration and a choreography model, albeit using XML based models. Our modeling
and transformation framework combines the UML modeling approach used by Arief
et al. and the choreography models used by NetTraveler to address non-functional re-
quirements of Web service compositions.

DECS is capable of altering the distribution pattern used at runtime. This func-
tionality is desirable as it allows the distribution pattern to be changed in reaction to
the execution environment. For example, under high load the decentralised distribution
pattern is more favourable that the centralised pattern. We consider runtime alteration
of distribution patterns on our modeling and transformation framework as future work.

8 Conclusion

An architecture approach to the composition of service-based software systems is re-
quired to overcome problems with ad-hoc and dynamic composition in recent service-
based software systems. We have introduced techniques based on architectural mod-
elling and pattern-based development, motivated by solutions successfully applied in
both object-oriented and component-based systems. We have also applied patterns that
have been found useful in a networking context to the Web service domain. Our con-
tribution is a modelling and transformation technique for expressing the distribution
pattern-based architecture of service compositions. Our novel modelling aspect, dis-
tribution patterns, expresses how a composed system is to be deployed, providing for
improved maintainability and comprehensibility. Any of the distribution patterns dis-
cussed may be used to guide the generation of an executable system, based on the
enterprises requirements. Our approach is characterised by a stepwise transformation
approach, which makes initially explicit distribution topology characteristics and distri-
bution architecture qualities implicit, but observable aspects of the generated system.

A number of modelling and transformation techniques were introduced, along with
a tool (TOPMAN) which assists in the generation of an executable system guided by the
chosen pattern. A UML 2.0 activity diagram and profile extension to model the distribu-
tion pattern, a modelling technique independent of the document format for specifying

and validating distribution patterns and finally a number of generators for transforming
models from one format to another and subsequently generating an executable system,
considerably reduce the coding effort and workload of a software architect.

Interoperability with existing tools and integration of different notation has been a
primary goal. Integration is central for two reasons:

– We can expect existing service architecture support in various ways. For instance
service implementations such as Java EJBs could be exposed Web services in an
eclipse-based development environment. Other tools might support domain and
data modelling. Our tools would need to be integrated with these.

– We intend considering integrating alternatives to our UML modelling language ap-
proach, based on the π-calculus and Architecture Description Languages. A model
generator for these modelling languages would extend the reach of our approach.

Interoperability and integration could be further enhanced by supplementing the
presented architecture approach by semantic modelling and reasoning techniques. In
[35, 36], we have investigated the possibility of using ontologically enhanced seman-
tic descriptions of services to support service discovery and matching in the context
of process composition. Ontology-based reasoning increases the degree of automation
[33]. While the service composition benefits in principle as we demonstrated, the pre-
sented techniques would need to be adapted to the pattern descriptions here, i.e. the
UML profile and the DPL would need to be extended.

We have added a discussion of quality and architectures in the development section,
which aims to emphasise the increasing importance. The documentation of the QoS at-
tributes of the complex patterns is an important future effort, which can act as a starting
point for further investigations that are beyond the scope of this work. Links between
architectural patterns and quality attributes have been discussed in the literature. A con-
clusive evaluation of the success of quality-driven architecture has to be looked at in
more detail – providing in particular empirical evidence of the establishment of quality
attributes through patterns.

Acknowledgment

The authors would like to thank the Irish Research Council for Science, Engineering
and Technology IRCSET for supporting the first author.

References

1. Alonso, G., Casati, F., Kuno, H., and Machiraju, V.: Web Services: Concepts, Architecture
and Applications Springer Verlag, 2004.

2. B. Bauer and J. Müller: MDA Applied: From Sequence Diagrams to Web Service Choreogra-
phy; In Proc. 4th International Conference (ICWE 2004), pages 132–136, Munich, Germany,
July 2004.

3. Bézivin, J.: In Search of a Basic Principle for Model Driven Engineering; UPGRADE, 2,
2004.

4. Barbacci, M.: Quality Attributes; Technical report, CMU/SEI-95-TR-021, 1995.
5. Barrett, R.: Investigations into the Model Driven Design of Distribution Patterns for Web

Service Compositions Ph.d. (thesis), Dublin City University, Dublin 9, Ireland, 2008.
6. Brambilla, M., Ceri, S., Fraternali, P., and Manolescu, I.: Process Modeling in Web Applica-

tions; ACM Transactions on Software Engineering and Methodology, 15(4):360–40, 2006.
7. Baldan, P., Corradini, A., and Gadducci, F.: Specifying and verifying uml activity diagrams

via graph transformation; In Global Computing, LNCS 3267, pages 18–33, 2005.
8. Buschmann, F., Henney, K., and Schmidt, D.: Pattern-Oriented Software Architecture Volume

4: A Pattern Language for Distributed Computing Wiley, 2007.
9. Barrett, R. and Pahl, C.: Model Driven Design of Distribution Patterns for Web Service Com-

positions; In The International Workshop on Models for Enterprise Computing (IWMEC 06),
Hong Kong, China, October 2006.

10. Barrett, R. and Pahl, C.: Semi-Automatic Distribution Pattern Modeling of Web Service
Compositions using Semantics; In Proc. Tenth IEEE International EDOC Conference, Hong
Kong, China, October 2006.

11. Barrett, R., Pahl, C., Patcas, L., and Murphy, J.: Model Driven Distribution Pattern Design
for Dynamic Web Service Compositions; In Proc. Sixth International Conference on Web
Engineering, Palo Alto, USA, July 2006.

12. Benatallah, B., Sheng, Q., and Dumas, M.: The Self-Serv Environment for Web Services
Composition; IEEE Internet Computing, 7:40–48, 2003.

13. Chafle, G. B., Chandra, S., Mann, V., and Nanda, M. G.: Decentralized orchestration of
composite web services; In Proc. 13th international World Wide Web conference, pages 134 –
143, New York, NY, USA, May 2004.

14. Cutumisu, M., Onuczko, C., Szafron, D., Schaeffer, J., McNaughton, M., Roy, T., Siegel, J.,
and Carbonaro, M.: Evaluating Pattern Catalogs: The Computer Games Experience; In Proc.
28th international conference on Software engineering (ICSE’06), pages 132–141. ACM Press,
2006.

15. D. Skogan and R. Grønmo and I. Solheim: Web Service Composition in UML; In Proc.
8th International IEEE Enterprise Distributed Object Computing Conference (EDOC), pages
47–57, Monterey, California, September 2004.

16. Ding, C., Nutanong, S., and Buyya, R.: P2P Networks for Content Sharing; CoRR,
cs.DC/0402018, 2004.

17. Engels, G., Hausmann, J., Heckel, R., and Sauer, S.: Testing the consistency of dynamic uml
diagrams; In Proc. Int’l Conf. IDPT, 2002.

18. Eriksson, H., Penker, M., Lyons, B., and Fado, D.: UML 2 Toolkit Wiley, 2003.
19. Frolund, S. and Koistinen, J.: Quality of Service Specification in Distributed Object Systems

Design; In Proceedings of the 4th USENIX Conference on ObjectOriented Technologies and
Systems (COOTS), New Mexico, USA, April 1998.

20. Frankel, D.: Model Driven Architecture: Applying MDA to Enterprise Computing Wiley,
2004.

21. Gardner, T.: UML Modeling of Automated Business Processes with a mapping to
BPEL4WS; In Proc. First European Workshop on Object Orientation and Web Service
(EOOWS), Darmstadt, Germany, July 2003.

22. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: Design Patterns:Elements of Reusable
Object-Oriented Software Addison-Wesley, 1995.

23. Grose, T.: Mastering XMI: Java Programming with XMI, XML, and UML Wiley, 2002.
24. Harrison, N. and Avgeriou, P.: Leveraging Architecture Patterns to Satisfy Quality At-

tributes; In Proc. 1st European Conference on Software Architecture, Madrid, Spain, 2007.
Springer Verlag.

25. K. Baı̈na and B. Benatallah and F. Casati and F. Toumani: Model-Driven Web Service De-
velopment; In Proc. 16th International Conference on Advanced Information Systems Engi-
neering (CAiSE), pages 290–306, Riga, Latvia, June 2004.

26. Koch, N.: Transformations Techniques in the Model-Driven Development Process of UWE;
In Proc. of 2nd Model-Driven Web Engineering Workshop, Palo Alto, USA, July 2006.

27. Menascé, D.: QoS Issues in Web Services; IEEE Internet Computing, 6(6):72–75,
November–December 2002.

28. OMG: Unified Modeling Language (UML), version 2.0; Technical report, OMG, 2003.
29. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification Final

Adopted Specification; Technical report, OMG, 2005.
30. OMG: UML Profile for QoS and Fault Tolerance; Technical report, OMG, 2005.
31. P. Bengtsson and N. Lassing and J. Bosch and H. van Vliet: Architecture-Level Modifiability

Analysis (ALMA); Journal of Systems and Software, 69(1-2):129–147, 2004.
32. Pahl, C.: A formal composition and interaction model for a web component platform; Elec-

tronic Notes in Theoretical Computer Science, 66(4):67 – 81, 2002 Formal Methods and Com-
ponent Interaction (ICALP 2002 Satellite Workshop).

33. Pahl, C.: A conceptual architecture for semantic web services development and deployment;
Int. Journal of Web and Grid Services, 1(3/4):287–304, 2005.

34. Pahl, C.: Layered ontological modelling for web service-oriented model-driven architecture;
In European Conference on Model-Driven Architecture ECMDA2005, pages 88–102. Springer
LNCS Series, 2005.

35. Pahl, C.: Semantic model-driven architecting of service-based software systems; Informa-
tion and Software Technology, 49(8):838–850, August 2007.

36. Pahl, C. and Barrett, R.: An Ontological Framework for Web Service Processes; Interna-
tional Journal of Software Engineering and Knowledge Engineering, 18(3):383 – 411, 2008.

37. Peltz, C.: Web Services Orchestration and Choreography; IEEE Computer, 36, 2003.
38. R. Grønmo and D. Skogan and I. Solheim and J. Oldevik: Model-Driven Web Service De-

velopment; The International Journal of Web Services Research, 1, 2004.
39. R. Grønmo and I. Solheim: Towards Modeling Web Service Composition in UML; In

Proc. 2nd International Workshop on Web Services: Modeling, Architecture and Infrastructure
(WSMAI-2004), pages 72–86, Porto, Portugal, April 2004.

40. Rensink, A. and Nederpel, R.: Graph transformation semantics for a qvt language; Electron.
Notes Theor. Comput. Sci., 211:51–62, 2008.

41. Sheng, Q., Benatallah, B., and Dumas, M.: SELF-SERV: A Platform for Rapid Composition
of Web Services in a Peer-to-Peer Environment; In Proc. 28th International Conference on
Very Large Data Bases, pages 1051–1054, Hong Kong, China, August 2002.

42. Tsiolakis, A. and Ehrig, H.: Consistency analysis of uml class and sequence diagrams using
attributed graph grammars; In Proc. of Joint APPLIGRAPH/GETGRATS Workshop on Graph
Transformation Systems, pages 77–86, 2000.

43. Taylor, R., Medvidovic, N., and Dashofy, E.: Software Architecture: Foundations, Theory,
and Practice Wiley, 2009.

44. Woodman, S. J., Palmer, D. J., Shrivastava, S. K., and Wheater, S. M.: A System for Dis-
tributed Enactment of Composite Web Services; In Work in progress report, Int. Conf. on
Service Oriented Computing, Trento, Italy, December 2003.

