
 1 

Abstract— Meeting the future requirements of higher 

bandwidth while providing ever more complex functions, 

future network processors will require a number of methods of 

improving processing performance. One such method will 

involve deeper processor pipelines to obtain higher operating 

frequencies.  Mitigation of the penalty costs associated with 

deeper pipelines have achieved by implementing prediction 

schemes, with previous execution history used to determine 

future decisions. In this paper we present an analysis of 

common branch prediction schemes when applied to network 

applications. Using widespread network applications, we find 

that unlike general purpose processing, hit rates in excess of 

95% can be obtained in a network processor using a small 256-

entry single level predictor. While our research demonstrates 

the low silicon cost of implementing a branch predictor, the 

long run times of network applications can leave the majority 

of the predictor logic idle, increasing static power and 

reducing device utilization. 

I. INTRODUCTION 

S the Internet has evolved, the functions required by a 

modern Network Processor (NP) have developed from 

simple packet forward to tasks requiring complex data 

processing such as packet classification and network 

security, while also meeting the higher bandwidth 

requirements of an expanding network. Typically, solutions 

such as increasing parallelization and hardware offloading 

have been employed as a means of meeting these 

requirements.  

Firstly, parallelization provides a means of massively 

increasing performance via additional Process Engines 

(PEs), while also retaining the flexibility vital to network 

processor architectures. Secondly, hardware acceleration 

provides another mechanism of reducing latency and 

increasing processing throughput, with computational 

intensive tasks such as encryption or deep packet inspection 

implemented on dedicated hardware. Both solutions present 

difficulties which must be examined. While increased 

parallelization provides additional resources, the demand 

placed on the memory and IO subsystem also scales, along 

with the difficulty associated with programming a massively 

parallel system (i.e. task partitioning, load balancing). On 

the other hand, hardware offloading presents a major 

challenge to one of the original design considerations of a 

network processor, namely flexibility. Ultra-high 

performance accelerators will tend implement optimized 

versions of a particular algorithm, reducing the flexibility 

afforded to the programmer as well as making the 

incorporation of future developments and improvements 

difficult.  

Therefore, it is with this in mind that we examine if some 

of the future processing requirements can be met by 

improving the performance of the RISC PEs instead of 

increasing the number of PEs implemented or implementing 

hardware acceleration. Previous works within the NP design 

space [1, 2, 3] have focused on examining the effectiveness 

of more complex processor design techniques such as 

superscalar or cache, with commercial NP architectures 

such as Cavium OCTEON[4] incorporating dual-issue PEs 

along with a coherent cache memory. Following this trend, 

it can be expected that more complex design techniques will 

increasingly be needed to meet future NP requirements. One 

such method of increasing PE performance is via a deeply 

pipelined architecture.  

Deeper instruction pipeline allows additional performance 

to be extracted by dividing instructions into smaller and 

faster tasks which can then operate in parallel. For reasons 

of the costs associated with the parallel architecture and 

need for on-chip peripheral components, it is typical to see 

relatively shallow pipelines within the PEs used in NP 

designs. By implementing deeper processor pipelines, 

additional performance to be extracted from a NP design, 

providing the branch penalty associated deeper processor 

pipelines can be minimized. This branch penalty occurs 

when a program flow instruction such as a conditional 

branch alters the program counter, requiring a delay while 

the condition is evaluated. While a shallow pipeline can 

absorb this penalty via pipeline stalls, the performance loss 

of such solutions would be prohibivately expensive in a 

deeply pipelined processor. Within general purpose 

processor, the most common solution to the problem has 

been to implement some form of branch predictor which 

attempts to calculate the outcome of a branch without 

having to insert stall instructions. The objective of this 

paper is to examine if such prediction techniques can be 

implemented in network processors as a means of extracting 

addition NP performance via deeply pipelined.  

The rest of this paper is organized as follows; In Section II 

we present a brief overview of branch prediction. Section 

III details the simulation framework employed, with Section 

IV detailing the branch characteristics, predictor 

performance and limitations of these solutions. Finally, a 

summary and conclusion are presented in Section V. 
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II. BRANCH PREDICTION 

With branch operations comprising a large amount of 

executed instruction [6], the number of stall cycles required 

constitutes a sizable lost processing time. Indeed, the work 

in [6] found for the MIPS architecture it was shown branch 

induced NOPs comprised 8% of the total instruction 

executed. In general, there are two types of branch 

prediction mechanism available. The first, static prediction 

[7], attempts to utilize a heuristic approach at compile time 

as a means of determining if a branch will be taken or not, 

e.g assuming forwarding branches not are taken while 

backward branches are taken. More complicated branch 

predictions schemes attempt to gather run-time information 

when making decisions.  

Dynamic predictors retain a history of previous branch 

outcomes which are then used to determine if a future 

branch prediction will likely be taken. Ideally, the histories 

of n previous branches are maintained in an array of n * 2-

bit sequential saturating counters. Together, these counters 

form the Pattern History Table (PHT). Using the result of 

previous branch evaluations, the saturating counters count 

from strongly not-taken to strongly taken. Addressing the 

PHT is achieved using either the branch address (Bimodal) 

or via a global Branch History Table (BHT) (Gag [8]), or a 

combination of both Gshare [9]. An example of a Gshare 

based dynamic predictor is shown in figure 1, with the 

branch and program counter address used to create an 

XOR’ed index into the pattern table. Since different 

branches may map to the same entry in the PHT, a number 

of solutions have been proposed which attempt to solve this 

interference issue, such as the Gap predictor which 

implements m PHTs in parallel. In [10], a number of highly 

parallel architectures where proposed, with the PAg scheme 

implementing a per-address BHT and  the PAp predictor 

implementing both a per-address BHT along with m PHTs. 

Along with these schemes, a combining approach [9] can be 

used. However, when compared to the small cache-less area 

cost of a PE these three solutions require a large amount of 

transistors to implement. Further information on branch 

prediction schemes can be found in [11, 12]. 

Within network processing design space, work presented 

[2] has briefly examined on the topic of branch prediction 

for network processors. It was demonstrated how 

performance increases of up to 15.7 % could be achieved. 

However the predictors examined in this work are 

prohibitively expensive for used in a PE. Although the exact 

silicon cost will vary from one technology to another, an 

approximate cost for implementing a branch predictor on a 

RISC-type PE is shown in appendix A. 

III. EXPERIMENT METHODOLOGY 

Using the ARM execution unit found in the Simplescalar 

toolset [14], we implement a simulation framework which 

attempts to more closely model the demands of a network 

processor. Shown in figure 2, the simulation model removes 

operations which would not be seen in real network 

applications such as file IO or system calls. Packets 

buffered within the interface unit before being moved to 

packet memory. Once processing is complete, packets are 

transferred back to the interface unit for egress. By 

removing such operations from the simulated applications, 

we ensure that only those branches core to application 

functionality are included in any simulation results.  

In all, 16 network applications are evaluated. The 

applications simulated are summarized in Table I. Broadly 

speaking, network applications are divided into Header 

Processing Applications (HPA) and Payload Processing 

Applications (PPA). While header applications such as IP 

forwarding will tend to use data such as addresses or packet 

length during conditional operations, payload processing 

tasks such as IP encryption will tend to function using only 

the payload length. A detailed overview of these 

applications and algorithms can be found in [1 – 3, 5].  

Network traces are obtained from [15]. However since 

these traces must clear sensitive information such as IP 

address or payload data, we derive semi-synthetic traces 

from these seeds, with random payload data inserted along 

with mechanism for rebuilding packets flows. The use of 

valid random IP address ensures that the branch predictors 

are tested for the worst case scenario, since a trie-based 

structure is highly conditional. To ensure a broad analysis of 

 
Fig.1. Gshare type branch predictor  

 
Fig.2. Simulation Framework  

TABLE I 

TARGET APPLICATIONS 

Applications Algorithm 

Forwarding LC-Trie, Radix, Hash 

Classify RFC, EGT-WPC, Hicuts 

Queue DRR 

Metering TBM, TrTCM 

IPsec-Encryption AES-CBC, CAST-CBC 

IPsec-Authentication SHA-1, MD5 

Error CRC32, Reed-Solomon 
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predictor behavior, three different traces are selected which 

comprise the packet variation seen on IP networks. While 

the OC-12 AMP trace contains a large proportion of large 

packets (~60% > 1000 Bytes), the slower OC-3 TXS trace 

contains almost entirely small packets (~80 < 64 Bytes). 

Along with the more average OC-192 PSC trace, this length 

distribution will determine if packet length and predictor 

performance are related.  

IV. EXPERIMENTAL RESULTS 

Depending on the underlying target architecture, previous 

analysis of network processor workloads [1-4] has found 

that branch instruction comprise between 7.2% and 17% of 

applications. However, the dual nature of network 

applications is hidden by an average view, with header 

applications requiring conditional operations as a means of 

traversing a trie or decision structure, while payload 

applications tending to implement conditional operations as 

a means of processing control loops, e.g. process 

while(offset !=packet length).  By examining the 

conditional operations executed we can see that for payload 

tasks, a single branch type will comprise the vast majority 

of conditional operations. On the other hand, routing or 

classification tasks require multiple branches to process a 

single packet this branch behavior translates into higher 

branch interference.  

Using a 512-entry Gshare predictor, we see in Table II 

that header applications such as RADIX can have up to 

30% interference, highlighting the fact that about a third of 

the 512-entries have more than one branch mapped to this 

location. At the same time, 27.7% of table entries are not 

used during execution. With NP applications running for 

long periods without change, an optimized solution should 

minimize this idle logic. Solution such as better hash 

indexing may therefore improve performance of a Gshare 

predictor, possibly optimizing the hashing function for 

small input sequences along with more compact tables. 

With static power comprising an ever more important 

component of digital design, the long run-time of network 

processor applications can result in significant device 

under-utilization.  

A. Branch Pattern History Table Size 

As was previously discussed in section II, branch 

prediction schemes for network processors are only viable if 

the cost of implementing the hardware is significantly lower 

than the cost associated with the PE. To examine this, we 

analyze the prediction rates for a simple bimodal predictor 

as the table size is increased. For space, header (HPA) and 

payload (PPA) processing applications are averaged 

together. From table III it can be seen that a small table 

footprint and good performance can be achieved with a 

Pattern History Table of either 256 or 512-entries, with a 

512-entry PHT providing only 0.46% increase over the 256-

entry table.  Since these applications will tend to be 

optimized for processing bandwidth, branch instructions 

will only represent control operations, such as the loop 

while counter is less than the packet length shown above. In 

this case we can see that the random distribution of packet 

lengths seen in IP traffic does not affect branch prediction 

performance in network applications. An example of this 

can be seen in the performance of an application such as the 

AES algorithm which utilizes as 16-Byte block size. Since 

the algorithm will have to execute at least three times for 

every packet (40-byte minimum packet), the prediction 

counters will tend towards to strong taken, with only the 

final loop miss-predicting. 

The small application code associated with network 

applications results in predictor saturation above 1024 

entries, significantly below the 16K-entries found in [12] to 

be required for general purpose processing.  However there 

remains a sizable performance difference between HPA and 

PPA tasks, with a similar predictor providing almost 7% 

less correct predictions when executing RADIX (88.9%) 

routing compared to any PPA task (>95.8%).  

Utilizing a 256-entry PHT, we examine whether a Per-

Address scheme such as PAp can provide a means of 

increasing PPA prediction rates. From figure 4 it can be 

seen that above 8 BHT entries, the per-address PAp scheme 

does provide a mechanism for increasing HPA prediction 

rates. With 128 (n=7) first level entries allowing for the 

performance difference between HPA and PPA task to be 

narrowed to ~1%.   

Finally, using an optimum PHT table size of between 8 

and 9, along with a first level shift register of 128 we 

analyze the performance of some of the prediction schemes 

proposed in previous work, along with a trivial ‘always 

taken’ static predictor.  From table III it can be seen that a 

Gshare based predictor provides optimum performance, 

with a 256-entry PHT provide the best performance at the 

lowest silicon cost.  

TABLE II 

BRANCH BEHAVIOR 

Task 
Branch 

Distribution 
Interference 

Entries 

Not Used 

AES 74.3% 8.3% 78.7% 

MD5 99.8% 0.6% 50.1% 

EGT 25.8% 13.6% 59.2% 

RADIX 31.2% 30.5% 27.7% 

LCTRIE 33.9% 16.4% 50.2% 

 
TABLE III 

PREDICTOR PERFORMANCE 

Address Hit Rate % 
Application 

HPA PPA AVG 

Trival (Always Taken) 76.89 68.07 86.97 

Bi-256 88.31 94.99 91.06 

Bi-512 89.04 94.99 91.49 

GAg – 256 93.38 95.05 94.06 

GAg – 512 91.50 95.75 93.25 

Gshare – 256 94.61 96.23 95.28 

Gshare – 512 93.66 97.64 95.30 

GAp – 512/8 93.00 94.78 93.73 

PAp – 128/256 93.10 96.78 94.62 

PAg – 4/4/256 90.10 95.52 92.33 
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V. CONCLUSION 

With increasing demands placed on network processors, 

additional performance must be extracted from all aspects 

of NP design. Implementing deeply pipelined PEs provides 

one such method, however such processors can result in 

lower performance when executing highly conditional code. 

In this paper we have examined which branch prediction 

schemes are applicable to the small RISC PEs found in 

Network Processors. Our work finds that unlike general 

purpose processing, NP applications can provide similar 

performance with a PHT requirement 64-times smaller. 

While schemes such as a 256-entry Gshare predictor can 

provide prediction rates of over 95% on average, our 

research also highlights that although a 256-entry table 

might be cheap to implement, the static nature of network 

applications could result in a PHT being severely under-

utilized. 

APPENDIX 

Following a similar architecture to the ARM 9TDMI 

processor, the transistor cost of the PE can be estimated at 

111,000 [12]. Assuming additional registers are needed for 

context switching, data transfer, etc, we can determine the 

cost of a single ‘shared-master’ 16 * 32-bit register bank as 

32 + (16 *32) latches, or ~6500 transistors per bank. With 7 

additional banks for context switching, along with a 2 banks 

for SRAM and DRAM transfers, the total cost of this PE is 

at least ~182,000 transistors. With 2-bit up/down saturating 

counter requiring 28 transistors to implement, a 2KB (or 

8K-entry) would require over 229,000 transistors to 

implement. The 2-KB bimodal examined in [12] is therefore 

too expensive to implement next to a simple RISC PE, 

while more complex predictors such as a 2-level predictor 

or combining predictor would occupy significantly more 

area than the processor. When examining branch predictor 

performance on network processor architectures, the 

fundamental question is not whether performance increases 

can be extracted from such solutions, but if such predictors 

are justified relative to the small footprint of the PE. 
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Fig.3. Predictor Hit Rate for varying Pattern History Table Sizes  
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Fig.4. Predictor Hit Rate for varying Branch History Table Sizes  
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