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Abstract—This paper proposes a novel method for the analysis
and simulation of integrated circuits (ICs) with the potential to
greatly shorten the IC design cycle. The circuits are assumed to
be subjected to input signals that have widely separated rates of
variation, e.g., in communication systems, an RF carrier modulated
by a low-frequency information signal. The proposed technique
involves two stages. Initially, a particular order result for the
circuit response is obtained using a multiresolution collocation
scheme involving cubic spline wavelet decomposition. A more
accurate solution is then obtained by adding another layer to
the wavelet series approximation. However, the novel technique
presented here enables the reuse of results acquired in the first
stage to obtain the second-stage result. Therefore, vast gains in
efficiency are obtained. Furthermore, a nonlinear model-order
reduction technique can readily be used in both stages making
the calculations even more efficient. Results will highlight the
efficacy of the proposed approach.

Index Terms—Integrated-circuit (IC) design, model-order re-
duction, nonlinear circuit simulation, wavelet collocation scheme.

I. INTRODUCTION

N THE initial stage of a design cycle, the circuit designer
is interested in the overall functional behavior of the de-
signed circuit, i.e., will the integrity of desired logical states be
preserved at the output? In order to ascertain this, the designer
needs to perform numerous simulations before settling on a final
design. Any change in the requirements for the circuit design
will necessitate the simulation process to restart from the begin-
ning. Furthermore, the complexity of today’s integrated circuits
(ICs) is such that these simulations are computationally expen-
sive both in terms of time and computer resources. The overall
result is a prolonged design cycle that is economically unaccept-
able. Hence, there is a need for a simulation technique that en-
ables the designer to obtain the circuit response with the desired
accuracy and within a reasonable time frame. Ideally, the first
phase of the design process should involve obtaining a rough
initial result for the circuit response to verify the functionality
of the design. In the second phase, when a higher degree of ac-
curacy for fine tuning the designed IC is sought, the possibility
of reusing results from the first phase would yield huge gains in
the efficiency of a simulation, thereby leading to major savings
in design time and ultimately reducing the cost of the designed
IC.
Harmonic balance [1]-[3] and time-domain integration [4]
are the two most widely employed circuit simulation techniques
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in circuit simulators for the analysis of high-frequency non-
linear circuits. Harmonic balance is most effective for periodic
or quasi-periodic steady-state analysis of mildly nonlinear cir-
cuits and, thus, is of limited use for the complex modulation
formats encountered in today’s high-speed systems or for sys-
tems involving strong nonlinearities. Time-domain integration,
on the other hand, is only practical for baseband systems. For the
simulation of circuits with digitally modulated high-frequency
carriers with long bit sequences, time-domain integration is ex-
cessively slow. As a result, there is a need for some form of
a general-purpose technique that can simulate state-of-the-art
systems that are subject to transient high-frequency signals or
complex modulated RF carriers.

Several envelope transient analysis approaches have recently
been proposed, whereby a mixed-mode technique is imple-
mented [5], [6]. The essence of these approaches is that the
slowly varying envelope of a signal is treated by time-domain
integration and that harmonic balance treats the high-frequency
carrier. However, existing techniques have limitations, e.g.,
restrictions in the bandwidth of the excitation signal [5] and
the limitations of harmonic balance with respect to strong
nonlinearities. In [7], Roychowdhury proposes converting the
differential-algebraic equations that describe the circuit to mul-
titime partial differential equations and applying time-domain
methods directly to solve the resultant systems. Pedro and Car-
valho [8] also employ a multitime partial differential-equation
approach, but uses a combination of harmonic balance and
time-domain integration to solve the resultant system.

The basic technique presented in this paper is a variation
and improvement of the multitime partial differential-equation
approach presented by Condon and Dautbegovi¢ in [9]. A mod-
ification of the wavelet-based collocation approach proposed
by Cai and Wang in [10] forms the core of the technique
and, unlike Christoffersen and Steer [11], the cubic spline
wavelet basis is employed to solve the multitime partial dif-
ferential-equation representation of the system rather than the
original ordinary differential-equation representation. However,
the technique presented in [9] is greatly enhanced in this paper,
yielding considerable gains in efficiency in two respects.

Firstly, a nonlinear model reduction process similar to that in
[12] is employed within the proposed envelope simulation tech-
nique to obtain very high standalone simulation efficiencies, as
shown in [13]. This paper compares, for test systems, the result
that is obtained with a full wavelet system, as is employed in [9],
to the result that is obtained when the model reduction strategy
is utilized. The accuracy will be seen to be excellent while sig-
nificant gains in computational speed are achieved. A result is
also given when a lower order wavelet scheme is employed. The
results will confirm that, for comparable computation times, sig-
nificant gains in accuracy may be achieved by employing the
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approach proposed in this paper as opposed to simply using a
lower order full wavelet scheme.

Secondly, in this paper, a further step toward a more accu-
rate simulation technique with even greater efficiency within the
overall design cycle has been proposed. The crucial step intro-
duced in this paper involves utilizing the multiresolution nature
of wavelet systems [14]. Rather than recalculating a complete
set of new coefficients for a higher degree accuracy approxima-
tion, it utilizes the coefficients calculated from a previous sim-
ulation that involved a lower order approximation. Each time a
new layer is added in the wavelet series approximation, only the
coefficients for that layer need to be calculated. The process may
be repeated by adding more layers until the required degree of
accuracy is achieved. The excellent simulation results obtained
for test circuits show the potential of the proposed technique as
a modern design simulation tool.

The remainder of this paper is organized as follows. Section II
gives a short presentation of the multitime partial differential-
equation approach. Sections IIT and IV describe the technique for
obtaining the rough initial solution of the first stage. Section V
further extends this contribution by presenting the mathematical
basis for an approximation with a higher degree of accuracy
incorporating results from an approximation with a lower
degree of accuracy. Finally, the simulation results obtained
for sample circuits using the proposed technique are presented
in Section VI

II. MULTITIME PARTIAL DIFFERENTIAL-EQUATION APPROACH

Consider a signal z(t) that is composed of a carrier modu-
lated by an envelope where the envelope signal is assumed to be
uncorrelated with the carrier. The signal may be represented in
two independent time variables as

t; relates to the low-frequency envelope and t» relates to the
high-frequency carrier.
Now consider a general nonlinear circuit described by

&(t) = f(=(t)) +b(t) )

where b(t) is the excitation vector, x(t) are the state variables,
and f is a nonlinear function. The corresponding multitime par-
tial differential-equation system can be written as shown in [7]
as

ox Oz

i Dty (&t t2)) + b(t1, 12). )

This multitime partial differential equation can be solved
using exclusively time-domain approaches as employed by
Roychowdhury [7] or using a combination of time-domain in-
tegration for the envelope and harmonic balance for the carrier,
as in [8]. However, for strongly nonlinear circuits, the use of
harmonic balance for the inner loop can prove limited. Another
approach for solving (3) using a pseudowavelet collocation
method derived from that proposed by Cai and Wang [10]
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Fig. 1. Diode rectifier circuit.

has been suggested by the authors [9]. In Section III, a brief
overview of the wavelet collocation scheme is given.

III. WAVELET COLLOCATION SCHEME

The technique involves approximating the unknown function
& (t1,t2) with a wavelet series in the ¢ dimension where ¢5 is
scaled such that t; € [0, L], L > 4, i.e.,

Tty t2)
=Z_1 _3(t1)m(te) + T_1,_2(t1)n2(t2)
+Z_1,_1(t1)es(t2)

L—4
+ Z To1k(t1)pr(te) + To1,0—3(t1)es(L — t2)
";i? n;—2
Y D Tialt)ie(t)
=0 k=1
+ 2 1, p—2(t1)m(L —t2) + T_1 p_1(t1)m (L — t2)
N
= Zi’k(h)‘l’k(h) “4)
=1

where ¢(t) and 9 (¢) are scaling and wavelet functions, respec-
tively, and 7(¢) are spline functions introduced to approximate
boundary nonhomogeneities, as described in [10]. Z(¢;) are the
unknown coefficients, which are a function of ¢; only. The total
number of unknown coefficients is N = 27 [.+3, where .J deter-
mines the level of wavelet coefficients to be taken into account
when approximating #(¢1, t2). From this point forward, Uy (¢)
shall be referred to as wavelets where it is understood that these
comprise the scaling functions ¢(t), the wavelet functions 1 (t),
and the nonhomogeneity functions 7)(¢).

As proposed by Condon and Dautbegovic¢ in [9], (3) is then
collocated on collocation points in t5 to result in a semidis-
cretized equation system. The interpolation points are those as
chosen in [10]. At this juncture, a nonlinear model reduction
strategy is employed. The particular model reduction strategy
chosen is based on that presented by Gunupudi and Nakhla in
[12]. Thus, instead of solving an /Vth-order system at each time
step to obtain the unknown state variables and output quan-
tity y(¢), a reduced-order system of transformed coefficients is
solved. Once the transformed coefficients are determined for the
entire time range of interest, the original N coefficients, Z(¢1),
and, consequently, the value of the state variables and output
quantity y(¢) may be obtained in one single post-processing
step. The solution process with the applied reduction scheme
is described in detail in the Section I'V.
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(a) Result from ODE solver with a very short time step. (b) Result from a full wavelet scheme (J = 1, L = 80). (c) Result from a full wavelet scheme

(J = 1, L = 80) with model-order reduction applied (¢ = 5). (d) Result with lower order full wavelet scheme (J = 0, L = 5).

1IV. MODEL REDUCTION TECHNIQUE

The expression in (4), if written for all collocation points in
t2, may be expressed as follows at a specific point in time ¢;:

ﬁ]N(tl) = E.'E(tl) 5)

where F is a constant N-dimensional square matrix whose
columns comprise the values of the N wavelet functions Wy (¢2)
at the N collocation points. The matrix is evaluated once at the
outset of the algorithm. % ;(¢1) is an N-dimensional column
vector of the unknown state variables and Z(¢1) is an N-di-
mensional column vector of the unknown wavelet coefficients
at the collocation points in ¢, at a specific instant in ¢ .
Substitution of (4) and (5) in (3) yields

dz

Y —Dz + fn(z) + by (6)

where D is an N-dimensional matrix whose columns are
formed from the derivatives of the wavelet functions in (4)

evaluated at each of the N collocation points in ¢5. Again, D
is evaluated only once at the outset of the algorithm. f,; and
by are column vectors comprising the values of f and b at the
collocation points.

At this point, the vector of coefficients Z(¢;) is expanded in
a Taylor series as follows:

oo

B(t) = a(t—19)' %)

1=0

where ! is the initial time and where the coefficients a; may be
computed recursively as in [12].
A Kirylov space is formed for a; as follows:

K = [0.0 aq aq] (8)

where ¢ is the order of the reduced system and is significantly
less than V.
An orthogonal decomposition of K results in

K =QR &)
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where QTQ = 1. 1, is the g-dimensional identity matrix. Q is
then employed to perform a congruent transformation of (5) as
follows:

z = Qz. (10)
Thus, a new reduced equation system is formed as
QTEQ g = 9Dz + QT n(Q) + Qby
or
. dz L T A
E-~ = -Di+QTfn(Q2) + by an
1

where E = QTEQ, D = QTDQ and by = QTbx.

This new system, i.e., (11), of dimension ¢ may then be
solved to determine x over the entire time domain of interest. A
trapezoidal-rule integration scheme is employed because of its
superior stability qualities. Once the ¢ coefficients Z have been
determined, Z(¢1) and, consequently, & ;n(t1) = EZ(¢1), may
be obtained in one single post-processing step. Thus, the above
solution process is significantly more efficient than solving
directly for Zyn(t1) at each time step, as was done in [9].

V. FORMATION OF AN APPROXIMATION OF A
HIGHER DEGREE OF ACCURACY

Assume that a preliminary circuit response is obtained by ap-
plying the technique presented in Section I'V. If a response with
a higher degree of accuracy is now required, the wavelet series
approximating the unknown function Z(¢1,t2) can be expanded
for another layer, i.e.,

Zxk t1)Uk(t2)

Ty (t1,t2) = (12)

where J; = J 41 and the total number of unknown coefficients
is now N; = 271 I 4 3. At this point, two options are available.

Firstly, the method proposed in Section IV can be imple-
mented from scratch to obtain the circuit response. The size of
the ordinary differential equations (ODEs) system to be solved
isincreased from N = 2L+ 3to Ny =2 L+ 3 =27+t 4+
3 and, consequently, the computational requirements for ob-
taining the required solution are also increased.

Alternatively, the following approach may be applied to ob-
tain the circuit response with increased accuracy. First, write
(12) as

N,
LL’J1 tl t2 = Z tl ‘ljk t2)
]; Ny
= Z Tr(t1) Uk (t2) + Z T (t1) Vi (t2)
k=1 k=N+1

13)

or, after setting M = N; — N = 27 L, the wavelet series ap-
proximating the unknown function Z (1, t2) can be written as

N M
By, (tist2) = > E(t)Vk(t2)+ D Engm(B) U am (t2)-
k=1 m=1
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Fig. 3. (a) Accuracy improved by adding an extra layer (J = 2) in wavelet

series approximation. (b) Result from the proposed new higher order technique
after adding an extra layer (.JJ; = 2) in wavelet series approximation.

(14)

The first term in (14) depends solely on coefficients from pre-
vious layers. The values for these coefficients at the collocation
points up to the layer J are already known from previous calcu-
lations and any additional required values can be obtained using
an interpolation technique [15]. The second term in (14) consists
solely of coefficients from the added layer and, thus, they need
to be calculated.

Now, for presentation purposes, consider the following

notation:
Lfk(tl)zé (tl) k=1,...,N (15)
and
Tp(t1)=gm(t1) k=N+1,....N+M, m=1,..., M.
(16)

Thus, the wavelet series approximating the unknown function
%(t1,t2) can be written as

Cr(t1) Vi (ta) + Z Gm (t1) VN 1m(t2).

m=1

‘/IA:JI (t17t2) =

7)
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Fig. 4. MESFET amplifier.

The expression in (17), if written for the M collocation points of
the added layer in £2, may be expressed as follows at a specific
point in time ¢;:

Ty m(t1) = Eot(th) + E19(t1) (18)
where g(¢1) is an M -dimensional column vector of the unknown
wavelet coefficients of layer .J;. ¢(¢1) is an N-dimensional
column vector of the known wavelet coefficients at the collo-
cation points in ¢, at a specific instant in ¢;, and its entries are
either already known directly or may be obtained as interpolated
values for any time ¢1. FEq is a constant M x N-dimensional
matrix whose columns comprise the values of the N wavelet
functions Wy (t2) at the M collocation points of the extra
layer, while E; is a constant M -dimensional square matrix
with U (t2) at the M collocation points as its entries. All
constant matrices are evaluated only once at the outset of the
algorithm. &y, a7(¢1) is an M-dimensional column vector of
the unknown state-variables on layer .J;.
Substitution of (17) and (18) in (3) yields

da de
El—g =—-D1g— Ey— — Doc+ f,(¢,g9) + by

19
dtq dtq (19)

where Dyg is an M x N dimensional matrix whose columns are
formed from the derivatives of the wavelet functions evaluated
at each of the M collocation points in ¢5, and D1 isan M x M
dimensional matrix. Again, Dy and D are evaluated only once
at the outset of the algorithm. fj, and bas are column vectors
comprising the values of f and b at the collocation points of
level J;.

Bearing in mind the notation introduced in (15) and (16),
dc/dt; may be expressed, using (6), as a function of ¢

de

proie E '[-De+ fy(€) + b

(20)

Substituting (20) in (19) yields the following equation:

A9

E; = —D1g+ (EoE™'D — Dy)e+ £, (€ 9)

~EoE ' fy(©) 4+ by — EoE by, (21)

This may be written for convenience as

da
Eld—tgl =-Dg+ Fuy(e,g) + By (22)
where
Fi(¢,9) = (EoE 'D — Dy)e+ fy(e,9) — EoE ' fx(0)
(23)
and
By = by — EoE™ by (24)

Equation (22) represents an M x M system of ODEs where
the unknowns g may be readily determined using a standard nu-
merical technique for solving a system of ODEs [16]. A trape-
zoidal-rule integration scheme is recommended because of its
stability qualities. The system in (22) is significantly smaller in
dimension than that in (6) in that it involves M unknowns rather
than N + M unknowns when written for the same wavelet ap-
proximation level J + 1. Therefore, the computational cost for
obtaining the circuit response is significantly reduced.

Furthermore, the structure of the equations in (6) and (22)
is exactly the same. Therefore, the same model-order reduction
technique, as presented in Section I'V, may readily be applied to
the system in (22). As aresult, even more gains in computational
efficiency may be achieved.

VI. SAMPLE SYSTEMS

The above technique has been employed for two nonlinear
systems: a diode rectifier circuit and a MESFET amplifier. The
nonlinear diode rectifier circuit is deliberately selected, as it is
strongly nonlinear in nature. The ability to efficiently simulate
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the behavior of this circuit with good accuracy will provide a
strong recommendation for employing the wavelet-based sim-
ulation technique presented here to simulate nonlinear circuits
subjected to input signals that have widely separated rates of
variation. The results for the MESFET amplifier response will
further confirm the efficacy of the proposed method for struc-
turally complex nonlinear circuits.

A. Nonlinear Diode Rectifier Circuit

The highly nonlinear diode rectifier circuit, as shown in
Fig. 1, is excited with the following source:

. [ 27 . [ 27
b(t) = sin (ﬁt> sin <Et>

where 77 corresponds to the envelope period and 7% corre-
sponds to the carrier period.

Fig. 2(a) shows the output from an ordinary differential-equa-
tion solver with a very short time step in order to obtain a highly
accurate version of the output voltage to act as a benchmark for
the purposes of confirming the accuracy of the proposed new
simulation technique.

Fig. 2(b) presents the output from a full wavelet scheme with
no model-order reduction applied, as was done in [9]. For the
chosen wavelet parameters .J = 1 and L = 80, the size of the
ODE system is N = 163. An adaptive backward-Euler pre-
dictor corrector approach is employed for obtaining the solution.
Good agreement is achieved when compared to the “accurate”
result [see Fig. 2(a)]. However, the size of an ODE system that
is solved is considerable and requires significant computer re-
sources.

Fig. 2(c) shows the output when the model-order reduction
technique proposed in Section IV is applied. For the same
wavelet parameters (J = 1,L = 80), the initial system of
N = 163 unknown wavelet coefficients is reduced to ¢ = 5
before obtaining the solution for the reduced-order system
(11). In terms of accuracy, the relative difference between the
result from the full wavelet scheme and the results obtained
having applied the model reduction technique is negligible.
However, in terms of computational time, the result obtained
with the model reduction technique is computed in only 7% of
the time necessary for the full wavelet scheme. This excellent
gain in computational efficiency is due to the fact that, instead
of solving an ODE system with 163 unknowns, a system with
only five unknowns is solved.

Finally, Fig. 2(d) shows the result when a lower order full
wavelet scheme is employed. In this case, . = 5and J = 0 in
(4). This results inan N = 8th-order system of equations, which
has similar computational requirements to the reduced wavelet
scheme with ¢ = 5. As can be seen from Fig. 2(d), there is
a significant loss in accuracy. This result clearly confirms that
the approach presented in Section IV is significantly better than
simply employing a full lower order wavelet scheme, especially
when circumstances require high computational efficiency.

To emphasize the gains in accuracy achieved by the addition
of an extra layer in the wavelet approximation series, Fig. 3(a)

(25)
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Fig. 5. (a) Result from an ODE solver with a very short time step. (b) Result
with full wavelet scheme (J = 1, L = 20) with model-order reduction (¢ =
20) applied. (c) Result with the proposed new higher order technique after
adding an extra layer (J = 2) in wavelet series approximation.

shows an example with wavelet layers J = 1 and .J = 2. The
collocation points range parameter L was deliberately chosen
to be very low (L = 10) so that gains in the accuracy due to
adding an extra layer would be highlighted. The significant im-
provement in the accuracy of the circuit response, as evidenced
from Fig. 3(a), confirms the rationale for employing extra layers.
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However, if the basic wavelet approach of Section IV for sim-
ulating a system is employed, the addition of extra layers in-
creases the computational requirements greatly. However, with
the novel technique proposed in Section V, this is no longer a
barrier.

Fig. 3(b) shows the results for the diode rectifier circuit with
a new layer added (J; = J 4+ 1 = 2). The full line repre-
sents result obtained using a full wavelet scheme with model
reduction. The dashed line is the circuit response calculated at
the same wavelet level, but reusing results calculated from the
lower order simulation. As can be seen, these two responses are
practically indistinguishable.

However, it took only 14% of the computing time to obtain the
higher degree of accuracy circuit response with the new method
when compared to the time necessary to compute the circuit re-
sponse by simply restarting the full wavelet simulation scheme
with J = 2.

B. MESFET Amplifier

Fig. 4 presents a practical RF MESFET amplifier circuit
whose behavior is described by a tenth-order ODE system. The
source input has the same structure as in (25), i.e., it has widely
separated rates of variation.

Fig. 5(a) shows the output from an ODE solver with a very
short time step in order to obtain a highly accurate version of
the output voltage to act as a benchmark.

Fig. 5(b) presents the MESFET response with the full wavelet
scheme (J = 1, L = 20) employed. As can be seen, the general
nature of the circuit response is obtained. However, the low-
order wavelet approximation (J = 1) is not sufficient in this
case to acquire the fine details of the output. Hence, there is a
need to use a higher order wavelet approximation.

Fig. 5(c) presents the output obtained with the proposed new
higher degree accuracy technique after adding an extra layer
(J = 2) in the wavelet series approximation. It can be seen
that the accuracy of the output voltage is considerably improved.
However, it took only 21% of the computational time to obtain
the circuit response with the new technique involving the cal-
culation of an extra layer coefficients compared to the compu-
tational time required when the simulation is restarted from the
beginning.

Therefore, the results presented here clearly confirm that, by
employing the approach presented in Section V, the accuracy de-
gree may be increased by adding an extra layer into the wavelet
series approximation, but with considerably less computational
costs than restarting a full wavelet scheme. This is possible since
the coefficients calculated for a lower order approximation are
reused to form the higher order approximation.

VII. CONCLUSION

A highly efficient wavelet-based simulation technique for
high-frequency circuits has been presented.

The multitime partial differential-equation system describing
the circuit has been solved using a pseudowavelet collocation
method. A nonlinear model-reduction process has been applied,
leading to significant gains in efficiency, but without a comple-
mentary loss in accuracy.

Furthermore, utilizing the multiresolution nature of wavelets,
this paper has presented a further step toward a more accu-
rate simulation technique with even greater efficiency within the
overall design cycle. Rather than recalculating a complete set of
new coefficients for higher order approximation of the unknown
in the multitime partial differential-equation representation of
the system, it utilizes the coefficients calculated from a previous
simulation that involved a lower order approximation.

Therefore, the technique can be very useful for the IC designer
since it enables the desired circuit response degree of accuracy
to be achieved in steps rather than restarting simulations each
time a higher degree of accuracy is sought. The results from
highly nonlinear sample circuits indicate the efficiency and
accuracy of the proposed approach.

As shown, the multilayer approach allows a controlled refine-
ment and, for any practical usage, it would be helpful to derive
the error measurement. This forms a basis of future work by the
authors.
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